66 lines
2.1 KiB
Lua
66 lines
2.1 KiB
Lua
|
|
||
|
local LSTM = {}
|
||
|
function LSTM.lstm(input_size, rnn_size, n, dropout)
|
||
|
dropout = dropout or 0
|
||
|
|
||
|
-- there will be 2*n+1 inputs
|
||
|
local inputs = {}
|
||
|
table.insert(inputs, nn.Identity()()) -- x
|
||
|
for L = 1,n do
|
||
|
table.insert(inputs, nn.Identity()()) -- prev_c[L]
|
||
|
table.insert(inputs, nn.Identity()()) -- prev_h[L]
|
||
|
end
|
||
|
|
||
|
local x, input_size_L
|
||
|
local outputs = {}
|
||
|
for L = 1,n do
|
||
|
-- c,h from previos timesteps
|
||
|
local prev_h = inputs[L*2+1]
|
||
|
local prev_c = inputs[L*2]
|
||
|
-- the input to this layer
|
||
|
if L == 1 then
|
||
|
x = OneHot(input_size)(inputs[1])
|
||
|
input_size_L = input_size
|
||
|
else
|
||
|
x = outputs[(L-1)*2]
|
||
|
if dropout > 0 then x = nn.Dropout(dropout)(x) end -- apply dropout, if any
|
||
|
input_size_L = rnn_size
|
||
|
end
|
||
|
-- evaluate the input sums at once for efficiency
|
||
|
local i2h = nn.Linear(input_size_L, 4 * rnn_size)(x)
|
||
|
local h2h = nn.Linear(rnn_size, 4 * rnn_size)(prev_h)
|
||
|
local all_input_sums = nn.CAddTable()({i2h, h2h})
|
||
|
-- decode the gates
|
||
|
local sigmoid_chunk = nn.Narrow(2, 1, 3 * rnn_size)(all_input_sums)
|
||
|
sigmoid_chunk = nn.Sigmoid()(sigmoid_chunk)
|
||
|
local in_gate = nn.Narrow(2, 1, rnn_size)(sigmoid_chunk)
|
||
|
local forget_gate = nn.Narrow(2, rnn_size + 1, rnn_size)(sigmoid_chunk)
|
||
|
local out_gate = nn.Narrow(2, 2 * rnn_size + 1, rnn_size)(sigmoid_chunk)
|
||
|
-- decode the write inputs
|
||
|
local in_transform = nn.Narrow(2, 3 * rnn_size + 1, rnn_size)(all_input_sums)
|
||
|
in_transform = nn.Tanh()(in_transform)
|
||
|
-- perform the LSTM update
|
||
|
local next_c = nn.CAddTable()({
|
||
|
nn.CMulTable()({forget_gate, prev_c}),
|
||
|
nn.CMulTable()({in_gate, in_transform})
|
||
|
})
|
||
|
-- gated cells form the output
|
||
|
local next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)})
|
||
|
|
||
|
table.insert(outputs, next_c)
|
||
|
table.insert(outputs, next_h)
|
||
|
end
|
||
|
|
||
|
-- set up the decoder
|
||
|
local top_h = outputs[#outputs]
|
||
|
if dropout > 0 then top_h = nn.Dropout(dropout)(top_h) end
|
||
|
local proj = nn.Linear(rnn_size, input_size)(top_h)
|
||
|
local logsoft = nn.LogSoftMax()(proj)
|
||
|
table.insert(outputs, logsoft)
|
||
|
|
||
|
return nn.gModule(inputs, outputs)
|
||
|
end
|
||
|
|
||
|
return LSTM
|
||
|
|