diff --git a/ss_train.lua b/ss_train.lua new file mode 100644 index 0000000..27dbf6f --- /dev/null +++ b/ss_train.lua @@ -0,0 +1,381 @@ + +--[[ + +This file trains a character-level multi-layer RNN on text data + +Code is based on implementation in +https://github.com/oxford-cs-ml-2015/practical6 +but modified to have multi-layer support, GPU support, as well as +many other common model/optimization bells and whistles. +The practical6 code is in turn based on +https://github.com/wojciechz/learning_to_execute +which is turn based on other stuff in Torch, etc... (long lineage) + +]]-- + +require 'torch' +require 'nn' +require 'nngraph' +require 'optim' +require 'lfs' + +require 'util.OneHot' +require 'util.misc' +local CharSplitLMMinibatchLoader = require 'util.CharSplitLMMinibatchLoader' +local model_utils = require 'util.model_utils' +local LSTM = require 'model.LSTM' +local GRU = require 'model.GRU' +local RNN = require 'model.RNN' + +cmd = torch.CmdLine() +cmd:text() +cmd:text('Train a character-level language model') +cmd:text() +cmd:text('Options') +-- data +cmd:option('-data_dir','data/tinyshakespeare','data directory. Should contain the file input.txt with input data') +cmd:option('-min_freq',0,'min frequent of character') +-- model params +cmd:option('-rnn_size', 128, 'size of LSTM internal state') +cmd:option('-num_layers', 2, 'number of layers in the LSTM') +cmd:option('-model', 'lstm', 'for now only lstm is supported. keep fixed') +-- optimization +cmd:option('-learning_rate',2e-3,'learning rate') +cmd:option('-learning_rate_decay',0.97,'learning rate decay') +cmd:option('-learning_rate_decay_after',10,'in number of epochs, when to start decaying the learning rate') +cmd:option('-decay_rate',0.95,'decay rate for rmsprop') +cmd:option('-dropout',0,'dropout for regularization, used after each RNN hidden layer. 0 = no dropout') +cmd:option('-seq_length',50,'number of timesteps to unroll for') +cmd:option('-batch_size',50,'number of sequences to train on in parallel') +cmd:option('-max_epochs',50,'number of full passes through the training data') +cmd:option('-grad_clip',5,'clip gradients at this value') +cmd:option('-train_frac',0.95,'fraction of data that goes into train set') +cmd:option('-val_frac',0.05,'fraction of data that goes into validation set') + -- test_frac will be computed as (1 - train_frac - val_frac) +cmd:option('-init_from', '', 'initialize network parameters from checkpoint at this path') +-- bookkeeping +cmd:option('-seed',123,'torch manual random number generator seed') +cmd:option('-print_every',1,'how many steps/minibatches between printing out the loss') +cmd:option('-eval_val_every',2000,'every how many iterations should we evaluate on validation data?') +cmd:option('-checkpoint_dir', 'cv', 'output directory where checkpoints get written') +cmd:option('-savefile','lstm','filename to autosave the checkpont to. Will be inside checkpoint_dir/') +cmd:option('-accurate_gpu_timing',0,'set this flag to 1 to get precise timings when using GPU. Might make code bit slower but reports accurate timings.') +-- GPU/CPU +cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU') +cmd:option('-opencl',0,'use OpenCL (instead of CUDA)') +-- Scheduled Sampling +cmd:option('-use_ss', 1, 'whether use scheduled sampling during training') +cmd:option('-start_ss', 1, 'start amount of truth data to be given to the model when using ss') +cmd:option('-decay_ss', 0.005, 'ss amount decay rate of each epoch') +cmd:option('-min_ss', 0.9, 'minimum amount of truth data to be given to the model when using ss') +cmd:text() + +-- parse input params +opt = cmd:parse(arg) +torch.manualSeed(opt.seed) +math.randomseed(opt.seed) +-- train / val / test split for data, in fractions +local test_frac = math.max(0, 1 - (opt.train_frac + opt.val_frac)) +local split_sizes = {opt.train_frac, opt.val_frac, test_frac} + +-- initialize cunn/cutorch for training on the GPU and fall back to CPU gracefully +if opt.gpuid >= 0 and opt.opencl == 0 then + local ok, cunn = pcall(require, 'cunn') + local ok2, cutorch = pcall(require, 'cutorch') + if not ok then print('package cunn not found!') end + if not ok2 then print('package cutorch not found!') end + if ok and ok2 then + print('using CUDA on GPU ' .. opt.gpuid .. '...') + cutorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua + cutorch.manualSeed(opt.seed) + else + print('If cutorch and cunn are installed, your CUDA toolkit may be improperly configured.') + print('Check your CUDA toolkit installation, rebuild cutorch and cunn, and try again.') + print('Falling back on CPU mode') + opt.gpuid = -1 -- overwrite user setting + end +end + +-- initialize clnn/cltorch for training on the GPU and fall back to CPU gracefully +if opt.gpuid >= 0 and opt.opencl == 1 then + local ok, cunn = pcall(require, 'clnn') + local ok2, cutorch = pcall(require, 'cltorch') + if not ok then print('package clnn not found!') end + if not ok2 then print('package cltorch not found!') end + if ok and ok2 then + print('using OpenCL on GPU ' .. opt.gpuid .. '...') + cltorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua + torch.manualSeed(opt.seed) + else + print('If cltorch and clnn are installed, your OpenCL driver may be improperly configured.') + print('Check your OpenCL driver installation, check output of clinfo command, and try again.') + print('Falling back on CPU mode') + opt.gpuid = -1 -- overwrite user setting + end +end + +-- create the data loader class +local loader = CharSplitLMMinibatchLoader.create(opt.data_dir, opt.batch_size, opt.seq_length, split_sizes, opt.min_freq) +local vocab_size = loader.vocab_size -- the number of distinct characters +local vocab = loader.vocab_mapping +print('vocab size: ' .. vocab_size) +-- make sure output directory exists +if not path.exists(opt.checkpoint_dir) then lfs.mkdir(opt.checkpoint_dir) end + +-- define the model: prototypes for one timestep, then clone them in time +local do_random_init = true +if string.len(opt.init_from) > 0 then + print('loading an LSTM from checkpoint ' .. opt.init_from) + local checkpoint = torch.load(opt.init_from) + protos = checkpoint.protos + -- make sure the vocabs are the same + local vocab_compatible = true + for c,i in pairs(checkpoint.vocab) do + if not vocab[c] == i then + vocab_compatible = false + end + end + assert(vocab_compatible, 'error, the character vocabulary for this dataset and the one in the saved checkpoint are not the same. This is trouble.') + -- overwrite model settings based on checkpoint to ensure compatibility + print('overwriting rnn_size=' .. checkpoint.opt.rnn_size .. ', num_layers=' .. checkpoint.opt.num_layers .. ' based on the checkpoint.') + opt.rnn_size = checkpoint.opt.rnn_size + opt.num_layers = checkpoint.opt.num_layers + do_random_init = false +else + print('creating an LSTM with ' .. opt.num_layers .. ' layers') + protos = {} + protos.rnn = LSTM.lstm(vocab_size, opt.rnn_size, opt.num_layers, opt.dropout) + protos.criterion = nn.ClassNLLCriterion() +end + +-- the initial state of the cell/hidden states +init_state = {} +for L=1,opt.num_layers do + local h_init = torch.zeros(opt.batch_size, opt.rnn_size) + if opt.gpuid >=0 and opt.opencl == 0 then h_init = h_init:cuda() end + if opt.gpuid >=0 and opt.opencl == 1 then h_init = h_init:cl() end + table.insert(init_state, h_init:clone()) + table.insert(init_state, h_init:clone()) +end + +-- ship the model to the GPU if desired +if opt.gpuid >= 0 and opt.opencl == 0 then + for k,v in pairs(protos) do v:cuda() end +end +if opt.gpuid >= 0 and opt.opencl == 1 then + for k,v in pairs(protos) do v:cl() end +end + +-- put the above things into one flattened parameters tensor +params, grad_params = model_utils.combine_all_parameters(protos.rnn) +-- initialization +if do_random_init then + params:uniform(-0.08, 0.08) -- small numbers uniform +end +-- initialize the LSTM forget gates with slightly higher biases to encourage remembering in the beginning +if opt.model == 'lstm' then + for layer_idx = 1, opt.num_layers do + for _,node in ipairs(protos.rnn.forwardnodes) do + if node.data.annotations.name == "i2h_" .. layer_idx then + print('setting forget gate biases to 1 in LSTM layer ' .. layer_idx) + -- the gates are, in order, i,f,o,g, so f is the 2nd block of weights + node.data.module.bias[{{opt.rnn_size+1, 2*opt.rnn_size}}]:fill(1.0) + end + end + end +end + + +print('number of parameters in the model: ' .. params:nElement()) +-- make a bunch of clones after flattening, as that reallocates memory +clones = {} +for name,proto in pairs(protos) do + print('cloning ' .. name) + clones[name] = model_utils.clone_many_times(proto, opt.seq_length, not proto.parameters) +end + +-- preprocessing helper function +function prepro(x,y) + x = x:transpose(1,2):contiguous() -- swap the axes for faster indexing + y = y:transpose(1,2):contiguous() + if opt.gpuid >= 0 and opt.opencl == 0 then -- ship the input arrays to GPU + -- have to convert to float because integers can't be cuda()'d + x = x:float():cuda() + y = y:float():cuda() + end + if opt.gpuid >= 0 and opt.opencl == 1 then -- ship the input arrays to GPU + x = x:cl() + y = y:cl() + end + return x,y +end + +-- evaluate the loss over an entire split +function eval_split(split_index, max_batches) + print('evaluating loss over split index ' .. split_index) + local n = loader.split_sizes[split_index] + if max_batches ~= nil then n = math.min(max_batches, n) end + + loader:reset_batch_pointer(split_index) -- move batch iteration pointer for this split to front + local loss = 0 + local rnn_state = {[0] = init_state} + + for i = 1,n do -- iterate over batches in the split + -- fetch a batch + local x, y = loader:next_batch(split_index) + x,y = prepro(x,y) + -- forward pass + for t=1,opt.seq_length do + clones.rnn[t]:evaluate() -- for dropout proper functioning + local lst = clones.rnn[t]:forward{x[t], unpack(rnn_state[t-1])} + rnn_state[t] = {} + for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end + prediction = lst[#lst] + loss = loss + clones.criterion[t]:forward(prediction, y[t]) + end + -- carry over lstm state + rnn_state[0] = rnn_state[#rnn_state] + -- print(i .. '/' .. n .. '...') + end + + loss = loss / opt.seq_length / n + return loss +end + +-- do fwd/bwd and return loss, grad_params +local init_state_global = clone_list(init_state) +function feval(x) + if x ~= params then + params:copy(x) + end + grad_params:zero() + + ------------------ get minibatch ------------------- + local x, y = loader:next_batch(1) + x,y = prepro(x,y) + ------------------- forward pass ------------------- + local rnn_state = {[0] = init_state_global} + local predictions = {} -- softmax outputs + local loss = 0 + for t=1,opt.seq_length do + clones.rnn[t]:training() -- make sure we are in correct mode (this is cheap, sets flag) + if opt.use_ss == 1 and t > 1 and math.random() > ss_current then + local probs = torch.exp(predictions[t-1]):squeeze() + _,samples = torch.max(probs,2) + xx = samples:view(samples:nElement()) + else + xx = x[t] + end + -- print(x[{{},t}]) + local lst = clones.rnn[t]:forward{xx, unpack(rnn_state[t-1])} + rnn_state[t] = {} + for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end -- extract the state, without output + predictions[t] = lst[#lst] -- last element is the prediction + loss = loss + clones.criterion[t]:forward(predictions[t], y[t]) + end + loss = loss / opt.seq_length + ------------------ backward pass ------------------- + -- initialize gradient at time t to be zeros (there's no influence from future) + local drnn_state = {[opt.seq_length] = clone_list(init_state, true)} -- true also zeros the clones + for t=opt.seq_length,1,-1 do + -- backprop through loss, and softmax/linear + local doutput_t = clones.criterion[t]:backward(predictions[t], y[t]) + table.insert(drnn_state[t], doutput_t) + local dlst = clones.rnn[t]:backward({x[t], unpack(rnn_state[t-1])}, drnn_state[t]) + drnn_state[t-1] = {} + for k,v in pairs(dlst) do + if k > 1 then -- k == 1 is gradient on x, which we dont need + -- note we do k-1 because first item is dembeddings, and then follow the + -- derivatives of the state, starting at index 2. I know... + drnn_state[t-1][k-1] = v + end + end + end + ------------------------ misc ---------------------- + -- transfer final state to initial state (BPTT) + init_state_global = rnn_state[#rnn_state] -- NOTE: I don't think this needs to be a clone, right? + -- clip gradient element-wise + grad_params:clamp(-opt.grad_clip, opt.grad_clip) + return loss, grad_params +end + +-- start optimization here +train_losses = {} +val_losses = {} +local optim_state = {learningRate = opt.learning_rate, alpha = opt.decay_rate} +local iterations = opt.max_epochs * loader.ntrain +local iterations_per_epoch = loader.ntrain +local loss0 = nil +ss_current = opt.start_ss +for i = 1, iterations do + local epoch = i / loader.ntrain + + local timer = torch.Timer() + local _, loss = optim.rmsprop(feval, params, optim_state) + if opt.accurate_gpu_timing == 1 and opt.gpuid >= 0 then + --[[ + Note on timing: The reported time can be off because the GPU is invoked async. If one + wants to have exactly accurate timings one must call cutorch.synchronize() right here. + I will avoid doing so by default because this can incur computational overhead. + --]] + cutorch.synchronize() + end + local time = timer:time().real + + local train_loss = loss[1] -- the loss is inside a list, pop it + train_losses[i] = train_loss + + -- exponential learning rate decay + if i % loader.ntrain == 0 and opt.learning_rate_decay < 1 then + if epoch >= opt.learning_rate_decay_after then + local decay_factor = opt.learning_rate_decay + optim_state.learningRate = optim_state.learningRate * decay_factor -- decay it + print('decayed learning rate by a factor ' .. decay_factor .. ' to ' .. optim_state.learningRate) + end + end + + -- decay schedule sampling amount + if opt.use_ss == 1 and i % loader.ntrain == 0 and ss_current > opt.min_ss then + ss_current = opt.start_ss - opt.decay_ss * epoch + print('decay schedule sampling amount to ' .. ss_current) + end + + -- every now and then or on last iteration + if i % opt.eval_val_every == 0 or i == iterations then + -- evaluate loss on validation data + local val_loss = eval_split(2) -- 2 = validation + val_losses[i] = val_loss + + local savefile = string.format('%s/lm_%s_epoch%.2f_%.4f.t7', opt.checkpoint_dir, opt.savefile, epoch, val_loss) + print('saving checkpoint to ' .. savefile) + local checkpoint = {} + checkpoint.protos = protos + checkpoint.opt = opt + checkpoint.train_losses = train_losses + checkpoint.val_loss = val_loss + checkpoint.val_losses = val_losses + checkpoint.i = i + checkpoint.epoch = epoch + checkpoint.vocab = loader.vocab_mapping + torch.save(savefile, checkpoint) + end + + if i % opt.print_every == 0 then + print(string.format("%d/%d (epoch %.3f), train_loss = %6.8f, grad/param norm = %6.4e, time/batch = %.4fs", i, iterations, epoch, train_loss, grad_params:norm() / params:norm(), time)) + end + + if i % 10 == 0 then collectgarbage() end + + -- handle early stopping if things are going really bad + if loss[1] ~= loss[1] then + print('loss is NaN. This usually indicates a bug. Please check the issues page for existing issues, or create a new issue, if none exist. Ideally, please state: your operating system, 32-bit/64-bit, your blas version, cpu/cuda/cl?') + break -- halt + end + if loss0 == nil then loss0 = loss[1] end + if loss[1] > loss0 * 3 then + print('loss is exploding, aborting.') + break -- halt + end +end + + diff --git a/train.lua b/train.lua index 06c064a..27dbf6f 100644 --- a/train.lua +++ b/train.lua @@ -24,6 +24,8 @@ require 'util.misc' local CharSplitLMMinibatchLoader = require 'util.CharSplitLMMinibatchLoader' local model_utils = require 'util.model_utils' local LSTM = require 'model.LSTM' +local GRU = require 'model.GRU' +local RNN = require 'model.RNN' cmd = torch.CmdLine() cmd:text() @@ -57,6 +59,7 @@ cmd:option('-print_every',1,'how many steps/minibatches between printing out the cmd:option('-eval_val_every',2000,'every how many iterations should we evaluate on validation data?') cmd:option('-checkpoint_dir', 'cv', 'output directory where checkpoints get written') cmd:option('-savefile','lstm','filename to autosave the checkpont to. Will be inside checkpoint_dir/') +cmd:option('-accurate_gpu_timing',0,'set this flag to 1 to get precise timings when using GPU. Might make code bit slower but reports accurate timings.') -- GPU/CPU cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU') cmd:option('-opencl',0,'use OpenCL (instead of CUDA)') @@ -191,6 +194,22 @@ for name,proto in pairs(protos) do clones[name] = model_utils.clone_many_times(proto, opt.seq_length, not proto.parameters) end +-- preprocessing helper function +function prepro(x,y) + x = x:transpose(1,2):contiguous() -- swap the axes for faster indexing + y = y:transpose(1,2):contiguous() + if opt.gpuid >= 0 and opt.opencl == 0 then -- ship the input arrays to GPU + -- have to convert to float because integers can't be cuda()'d + x = x:float():cuda() + y = y:float():cuda() + end + if opt.gpuid >= 0 and opt.opencl == 1 then -- ship the input arrays to GPU + x = x:cl() + y = y:cl() + end + return x,y +end + -- evaluate the loss over an entire split function eval_split(split_index, max_batches) print('evaluating loss over split index ' .. split_index) @@ -204,23 +223,15 @@ function eval_split(split_index, max_batches) for i = 1,n do -- iterate over batches in the split -- fetch a batch local x, y = loader:next_batch(split_index) - if opt.gpuid >= 0 and opt.opencl == 0 then -- ship the input arrays to GPU - -- have to convert to float because integers can't be cuda()'d - x = x:float():cuda() - y = y:float():cuda() - end - if opt.gpuid >= 0 and opt.opencl == 1 then -- ship the input arrays to GPU - x = x:cl() - y = y:cl() - end + x,y = prepro(x,y) -- forward pass for t=1,opt.seq_length do clones.rnn[t]:evaluate() -- for dropout proper functioning - local lst = clones.rnn[t]:forward{x[{{}, t}], unpack(rnn_state[t-1])} + local lst = clones.rnn[t]:forward{x[t], unpack(rnn_state[t-1])} rnn_state[t] = {} for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end prediction = lst[#lst] - loss = loss + clones.criterion[t]:forward(prediction, y[{{}, t}]) + loss = loss + clones.criterion[t]:forward(prediction, y[t]) end -- carry over lstm state rnn_state[0] = rnn_state[#rnn_state] @@ -241,15 +252,7 @@ function feval(x) ------------------ get minibatch ------------------- local x, y = loader:next_batch(1) - if opt.gpuid >= 0 and opt.opencl == 0 then -- ship the input arrays to GPU - -- have to convert to float because integers can't be cuda()'d - x = x:float():cuda() - y = y:float():cuda() - end - if opt.gpuid >= 0 and opt.opencl == 1 then -- ship the input arrays to GPU - x = x:cl() - y = y:cl() - end + x,y = prepro(x,y) ------------------- forward pass ------------------- local rnn_state = {[0] = init_state_global} local predictions = {} -- softmax outputs @@ -261,14 +264,14 @@ function feval(x) _,samples = torch.max(probs,2) xx = samples:view(samples:nElement()) else - xx = x[{{}, t}] + xx = x[t] end -- print(x[{{},t}]) local lst = clones.rnn[t]:forward{xx, unpack(rnn_state[t-1])} rnn_state[t] = {} for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end -- extract the state, without output predictions[t] = lst[#lst] -- last element is the prediction - loss = loss + clones.criterion[t]:forward(predictions[t], y[{{}, t}]) + loss = loss + clones.criterion[t]:forward(predictions[t], y[t]) end loss = loss / opt.seq_length ------------------ backward pass ------------------- @@ -276,9 +279,9 @@ function feval(x) local drnn_state = {[opt.seq_length] = clone_list(init_state, true)} -- true also zeros the clones for t=opt.seq_length,1,-1 do -- backprop through loss, and softmax/linear - local doutput_t = clones.criterion[t]:backward(predictions[t], y[{{}, t}]) + local doutput_t = clones.criterion[t]:backward(predictions[t], y[t]) table.insert(drnn_state[t], doutput_t) - local dlst = clones.rnn[t]:backward({x[{{}, t}], unpack(rnn_state[t-1])}, drnn_state[t]) + local dlst = clones.rnn[t]:backward({x[t], unpack(rnn_state[t-1])}, drnn_state[t]) drnn_state[t-1] = {} for k,v in pairs(dlst) do if k > 1 then -- k == 1 is gradient on x, which we dont need @@ -309,6 +312,14 @@ for i = 1, iterations do local timer = torch.Timer() local _, loss = optim.rmsprop(feval, params, optim_state) + if opt.accurate_gpu_timing == 1 and opt.gpuid >= 0 then + --[[ + Note on timing: The reported time can be off because the GPU is invoked async. If one + wants to have exactly accurate timings one must call cutorch.synchronize() right here. + I will avoid doing so by default because this can incur computational overhead. + --]] + cutorch.synchronize() + end local time = timer:time().real local train_loss = loss[1] -- the loss is inside a list, pop it @@ -350,7 +361,7 @@ for i = 1, iterations do end if i % opt.print_every == 0 then - print(string.format("%d/%d (epoch %.3f), train_loss = %6.8f, grad/param norm = %6.4e, time/batch = %.2fs", i, iterations, epoch, train_loss, grad_params:norm() / params:norm(), time)) + print(string.format("%d/%d (epoch %.3f), train_loss = %6.8f, grad/param norm = %6.4e, time/batch = %.4fs", i, iterations, epoch, train_loss, grad_params:norm() / params:norm(), time)) end if i % 10 == 0 then collectgarbage() end