--[[ This file samples characters from a trained model Code is based on implementation in https://github.com/oxford-cs-ml-2015/practical6 ]]-- require 'torch' require 'nn' require 'nngraph' require 'optim' require 'lfs' require 'util.OneHot' require 'util.misc' cmd = torch.CmdLine() cmd:text() cmd:text('Sample from a character-level language model') cmd:text() cmd:text('Options') -- required: cmd:argument('-model','model checkpoint to use for sampling') -- optional parameters cmd:option('-seed',123,'random number generator\'s seed') cmd:option('-sample',1,' 0 to use max at each timestep, 1 to sample at each timestep') cmd:option('-primetext',"",'used as a prompt to "seed" the state of the LSTM using a given sequence, before we sample.') cmd:option('-length',2000,'number of characters to sample') cmd:option('-temperature',1,'temperature of sampling') cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU') cmd:option('-verbose',1,'set to 0 to ONLY print the sampled text, no diagnostics') cmd:text() -- parse input params opt = cmd:parse(arg) -- gated print: simple utility function wrapping a print function gprint(str) if opt.verbose == 1 then print(str) end end -- check that cunn/cutorch are installed if user wants to use the GPU if opt.gpuid >= 0 then local ok, cunn = pcall(require, 'cunn') local ok2, cutorch = pcall(require, 'cutorch') if not ok then gprint('package cunn not found!') end if not ok2 then gprint('package cutorch not found!') end if ok and ok2 then gprint('using CUDA on GPU ' .. opt.gpuid .. '...') cutorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua cutorch.manualSeed(opt.seed) else gprint('Falling back on CPU mode') opt.gpuid = -1 -- overwrite user setting end end torch.manualSeed(opt.seed) -- load the model checkpoint if not lfs.attributes(opt.model, 'mode') then gprint('Error: File ' .. opt.model .. ' does not exist. Are you sure you didn\'t forget to prepend cv/ ?') end checkpoint = torch.load(opt.model) protos = checkpoint.protos protos.rnn:evaluate() -- put in eval mode so that dropout works properly -- initialize the vocabulary (and its inverted version) local vocab = checkpoint.vocab local ivocab = {} for c,i in pairs(vocab) do ivocab[i] = c end -- initialize the rnn state to all zeros gprint('creating an LSTM...') local current_state local num_layers = checkpoint.opt.num_layers current_state = {} for L = 1,checkpoint.opt.num_layers do -- c and h for all layers local h_init = torch.zeros(1, checkpoint.opt.rnn_size) if opt.gpuid >= 0 then h_init = h_init:cuda() end table.insert(current_state, h_init:clone()) table.insert(current_state, h_init:clone()) end state_size = #current_state function get_char(str) local len = #str local left = 0 local arr = {0, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc} local unordered = {} local start = 1 local wordLen = 0 while len ~= left do local tmp = string.byte(str, start) local i = #arr while arr[i] do if tmp >= arr[i] then break end i = i - 1 end wordLen = i + wordLen local tmpString = string.sub(str, start, wordLen) start = start + i left = left + i unordered[#unordered+1] = tmpString end end -- do a few seeded timesteps local seed_text = opt.primetext if string.len(seed_text) > 0 then gprint('seeding with ' .. seed_text) gprint('--------------------------') local chars = get_char(seed_text) print(chars) for i,c in ipairs(chars)'.' do prev_char = torch.Tensor{vocab[c]} io.write(ivocab[prev_char[1]]) if opt.gpuid >= 0 then prev_char = prev_char:cuda() end local lst = protos.rnn:forward{prev_char, unpack(current_state)} -- lst is a list of [state1,state2,..stateN,output]. We want everything but last piece current_state = {} for i=1,state_size do table.insert(current_state, lst[i]) end prediction = lst[#lst] -- last element holds the log probabilities end else -- fill with uniform probabilities over characters (? hmm) gprint('missing seed text, using uniform probability over first character') gprint('--------------------------') prediction = torch.Tensor(1, #ivocab):fill(1)/(#ivocab) if opt.gpuid >= 0 then prediction = prediction:cuda() end end -- start sampling/argmaxing for i=1, opt.length do -- log probabilities from the previous timestep if opt.sample == 0 then -- use argmax local _, prev_char_ = prediction:max(2) prev_char = prev_char_:resize(1) else -- use sampling prediction:div(opt.temperature) -- scale by temperature local probs = torch.exp(prediction):squeeze() probs:div(torch.sum(probs)) -- renormalize so probs sum to one prev_char = torch.multinomial(probs:float(), 1):resize(1):float() end -- forward the rnn for next character local lst = protos.rnn:forward{prev_char, unpack(current_state)} current_state = {} for i=1,state_size do table.insert(current_state, lst[i]) end prediction = lst[#lst] -- last element holds the log probabilities io.write(ivocab[prev_char[1]]) end io.write('\n') io.flush()