char-rnn-chinese/model/LSTM.lua
2015-09-25 10:24:38 +08:00

72 lines
2.5 KiB
Lua

local LSTM = {}
function LSTM.lstm(input_size, rnn_size, n, dropout)
dropout = dropout or 0
-- there will be 2*n+1 inputs
local inputs = {}
table.insert(inputs, nn.Identity()()) -- x
for L = 1,n do
table.insert(inputs, nn.Identity()()) -- prev_c[L]
table.insert(inputs, nn.Identity()()) -- prev_h[L]
end
local x, input_size_L
local outputs = {}
for L = 1,n do
-- c,h from previos timesteps
local prev_h = inputs[L*2+1]
local prev_c = inputs[L*2]
-- the input to this layer
if L == 1 then
x = OneHot(input_size)(inputs[1])
input_size_L = input_size
else
x = outputs[(L-1)*2]
if dropout > 0 then x = nn.Dropout(dropout)(x) end -- apply dropout, if any
input_size_L = rnn_size
end
-- evaluate the input sums at once for efficiency
local i2h = nn.Linear(input_size_L, 4 * rnn_size)(x):annotate{name='i2h_'..L}
local h2h = nn.Linear(rnn_size, 4 * rnn_size)(prev_h):annotate{name='h2h_'..L}
local all_input_sums = nn.CAddTable()({i2h, h2h})
-- decode the gates
-- local sigmoid_chunk = nn.Narrow(2, 1, 3 * rnn_size)(all_input_sums)
-- sigmoid_chunk = nn.Sigmoid()(sigmoid_chunk)
-- local in_gate = nn.Narrow(2, 1, rnn_size)(sigmoid_chunk)
-- local forget_gate = nn.Narrow(2, rnn_size + 1, rnn_size)(sigmoid_chunk)
-- local out_gate = nn.Narrow(2, 2 * rnn_size + 1, rnn_size)(sigmoid_chunk)
local reshaped = nn.Reshape(4, rnn_size)(all_input_sums)
local n1, n2, n3, n4 = nn.SplitTable(2)(reshaped):split(4)
local in_gate = nn.Sigmoid()(n1)
local forget_gate = nn.Sigmoid()(n2)
local out_gate = nn.Sigmoid()(n3)
-- decode the write inputs
-- local in_transform = nn.Narrow(2, 3 * rnn_size + 1, rnn_size)(all_input_sums)
-- in_transform = nn.Tanh()(in_transform)
local in_transform = nn.Tanh()(n4)
-- perform the LSTM update
local next_c = nn.CAddTable()({
nn.CMulTable()({forget_gate, prev_c}),
nn.CMulTable()({in_gate, in_transform})
})
-- gated cells form the output
local next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)})
table.insert(outputs, next_c)
table.insert(outputs, next_h)
end
-- set up the decoder
local top_h = outputs[#outputs]
if dropout > 0 then top_h = nn.Dropout(dropout)(top_h) end
local proj = nn.Linear(rnn_size, input_size)(top_h):annotate{name='decoder'}
local logsoft = nn.LogSoftMax()(proj)
table.insert(outputs, logsoft)
return nn.gModule(inputs, outputs)
end
return LSTM