178 lines
5.6 KiB
Lua
178 lines
5.6 KiB
Lua
|
|
--[[
|
|
|
|
This file samples characters from a trained model
|
|
|
|
Code is based on implementation in
|
|
https://github.com/oxford-cs-ml-2015/practical6
|
|
|
|
]]--
|
|
|
|
require 'torch'
|
|
require 'nn'
|
|
require 'nngraph'
|
|
require 'optim'
|
|
require 'lfs'
|
|
|
|
require 'util.OneHot'
|
|
require 'util.misc'
|
|
|
|
cmd = torch.CmdLine()
|
|
cmd:text()
|
|
cmd:text('Sample from a character-level language model')
|
|
cmd:text()
|
|
cmd:text('Options')
|
|
-- required:
|
|
cmd:argument('-model','model checkpoint to use for sampling')
|
|
-- optional parameters
|
|
cmd:option('-seed',123,'random number generator\'s seed')
|
|
cmd:option('-sample',1,' 0 to use max at each timestep, 1 to sample at each timestep')
|
|
cmd:option('-primetext',"",'used as a prompt to "seed" the state of the LSTM using a given sequence, before we sample.')
|
|
cmd:option('-length',2000,'max number of characters to sample')
|
|
cmd:option('-stop','\\n\\n\\n\\n\\n','stop sampling when detected')
|
|
cmd:option('-temperature',1,'temperature of sampling')
|
|
cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU')
|
|
cmd:option('-verbose',1,'set to 0 to ONLY print the sampled text, no diagnostics')
|
|
cmd:text()
|
|
|
|
-- parse input params
|
|
opt = cmd:parse(arg)
|
|
|
|
-- gated print: simple utility function wrapping a print
|
|
function gprint(str)
|
|
if opt.verbose == 1 then print(str) end
|
|
end
|
|
|
|
-- check that cunn/cutorch are installed if user wants to use the GPU
|
|
if opt.gpuid >= 0 then
|
|
local ok, cunn = pcall(require, 'cunn')
|
|
local ok2, cutorch = pcall(require, 'cutorch')
|
|
if not ok then gprint('package cunn not found!') end
|
|
if not ok2 then gprint('package cutorch not found!') end
|
|
if ok and ok2 then
|
|
gprint('using CUDA on GPU ' .. opt.gpuid .. '...')
|
|
cutorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua
|
|
cutorch.manualSeed(opt.seed)
|
|
else
|
|
gprint('Falling back on CPU mode')
|
|
opt.gpuid = -1 -- overwrite user setting
|
|
end
|
|
end
|
|
torch.manualSeed(opt.seed)
|
|
|
|
-- load the model checkpoint
|
|
if not lfs.attributes(opt.model, 'mode') then
|
|
gprint('Error: File ' .. opt.model .. ' does not exist. Are you sure you didn\'t forget to prepend cv/ ?')
|
|
end
|
|
checkpoint = torch.load(opt.model)
|
|
protos = checkpoint.protos
|
|
protos.rnn:evaluate() -- put in eval mode so that dropout works properly
|
|
|
|
-- initialize the vocabulary (and its inverted version)
|
|
local vocab = checkpoint.vocab
|
|
local ivocab = {}
|
|
for c,i in pairs(vocab) do ivocab[i] = c end
|
|
|
|
-- initialize the rnn state to all zeros
|
|
gprint('creating an LSTM...')
|
|
local current_state
|
|
local num_layers = checkpoint.opt.num_layers
|
|
current_state = {}
|
|
for L = 1,checkpoint.opt.num_layers do
|
|
-- c and h for all layers
|
|
local h_init = torch.zeros(1, checkpoint.opt.rnn_size)
|
|
if opt.gpuid >= 0 then h_init = h_init:cuda() end
|
|
table.insert(current_state, h_init:clone())
|
|
table.insert(current_state, h_init:clone())
|
|
end
|
|
state_size = #current_state
|
|
|
|
-- parse characters from a string
|
|
function get_char(str)
|
|
local len = #str
|
|
local left = 0
|
|
local arr = {0, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc}
|
|
local unordered = {}
|
|
local start = 1
|
|
local wordLen = 0
|
|
while len ~= left do
|
|
local tmp = string.byte(str, start)
|
|
local i = #arr
|
|
while arr[i] do
|
|
if tmp >= arr[i] then
|
|
break
|
|
end
|
|
i = i - 1
|
|
end
|
|
wordLen = i + wordLen
|
|
local tmpString = string.sub(str, start, wordLen)
|
|
start = start + i
|
|
left = left + i
|
|
unordered[#unordered+1] = tmpString
|
|
end
|
|
return unordered
|
|
end
|
|
|
|
-- do a few seeded timesteps
|
|
local seed_text = opt.primetext
|
|
if string.len(seed_text) > 0 then
|
|
gprint('seeding with ' .. seed_text)
|
|
gprint('--------------------------')
|
|
local chars = get_char(seed_text)
|
|
for i,c in ipairs(chars) do
|
|
prev_char = torch.Tensor{vocab[c]}
|
|
io.write(ivocab[prev_char[1]])
|
|
if opt.gpuid >= 0 then prev_char = prev_char:cuda() end
|
|
local lst = protos.rnn:forward{prev_char, unpack(current_state)}
|
|
-- lst is a list of [state1,state2,..stateN,output]. We want everything but last piece
|
|
current_state = {}
|
|
for i=1,state_size do table.insert(current_state, lst[i]) end
|
|
prediction = lst[#lst] -- last element holds the log probabilities
|
|
end
|
|
else
|
|
-- fill with uniform probabilities over characters (? hmm)
|
|
gprint('missing seed text, using uniform probability over first character')
|
|
gprint('--------------------------')
|
|
prediction = torch.Tensor(1, #ivocab):fill(1)/(#ivocab)
|
|
if opt.gpuid >= 0 then prediction = prediction:cuda() end
|
|
end
|
|
|
|
-- start sampling/argmaxing
|
|
result = ''
|
|
for i=1, opt.length do
|
|
|
|
-- log probabilities from the previous timestep
|
|
-- make sure the output char is not UNKNOW
|
|
if opt.sample == 0 then
|
|
-- use argmax
|
|
local _, prev_char_ = prediction:max(2)
|
|
prev_char = prev_char_:resize(1)
|
|
else
|
|
-- use sampling
|
|
real_char = 'UNKNOW'
|
|
while(real_char == 'UNKNOW') do
|
|
prediction:div(opt.temperature) -- scale by temperature
|
|
local probs = torch.exp(prediction):squeeze()
|
|
probs:div(torch.sum(probs)) -- renormalize so probs sum to one
|
|
prev_char = torch.multinomial(probs:float(), 1):resize(1):float()
|
|
real_char = ivocab[prev_char[1]]
|
|
end
|
|
end
|
|
|
|
-- forward the rnn for next character
|
|
local lst = protos.rnn:forward{prev_char, unpack(current_state)}
|
|
current_state = {}
|
|
for i=1,state_size do table.insert(current_state, lst[i]) end
|
|
prediction = lst[#lst] -- last element holds the log probabilities
|
|
|
|
-- io.write(ivocab[prev_char[1]])
|
|
result = result .. ivocab[prev_char[1]]
|
|
|
|
-- in my data, five \n represent the end of each document
|
|
-- so count \n to stop sampling
|
|
if string.find(result, opt.stop) then break end
|
|
end
|
|
io.write(result)
|
|
io.write('\n') io.flush()
|
|
|