#include #include #include "gl_frustum.h" namespace Util { // We create an enum of the sides so we don't have to call each side 0 or 1. // This way it makes it more understandable and readable when dealing with frustum sides. enum FrustumSide { RIGHT = 0, // The RIGHT side of the frustum LEFT = 1, // The LEFT side of the frustum BOTTOM = 2, // The BOTTOM side of the frustum TOP = 3, // The TOP side of the frustum BACK = 4, // The BACK side of the frustum FRONT = 5 // The FRONT side of the frustum }; // Like above, instead of saying a number for the ABC and D of the plane, we // want to be more descriptive. enum PlaneData { A = 0, // The X value of the plane's normal B = 1, // The Y value of the plane's normal C = 2, // The Z value of the plane's normal D = 3 // The distance the plane is from the origin }; ///////////////////////////////// NORMALIZE PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* ///// ///// This normalizes a plane (A side) from a given frustum. ///// ///////////////////////////////// NORMALIZE PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* void NormalizePlane(float frustum[6][4], int side) { // Here we calculate the magnitude of the normal to the plane (point A B C) // Remember that (A, B, C) is that same thing as the normal's (X, Y, Z). // To calculate magnitude you use the equation: magnitude = sqrt( x^2 + y^2 + z^2) float magnitude = (float)sqrt( frustum[side][A] * frustum[side][A] + frustum[side][B] * frustum[side][B] + frustum[side][C] * frustum[side][C] ); // Then we divide the plane's values by it's magnitude. // This makes it easier to work with. frustum[side][A] /= magnitude; frustum[side][B] /= magnitude; frustum[side][C] /= magnitude; frustum[side][D] /= magnitude; } ///////////////////////////////// CALCULATE FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* ///// ///// This extracts our frustum from the projection and modelview matrix. ///// ///////////////////////////////// CALCULATE FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* void CFrustum::CalculateFrustum() { float proj[16]; // This will hold our projection matrix float modl[16]; // This will hold our modelview matrix float clip[16]; // This will hold the clipping planes // glGetFloatv() is used to extract information about our OpenGL world. // Below, we pass in GL_PROJECTION_MATRIX to abstract our projection matrix. // It then stores the matrix into an array of [16]. glGetFloatv( GL_PROJECTION_MATRIX, proj ); // By passing in GL_MODELVIEW_MATRIX, we can abstract our model view matrix. // This also stores it in an array of [16]. glGetFloatv( GL_MODELVIEW_MATRIX, modl ); // Now that we have our modelview and projection matrix, if we combine these 2 matrices, // it will give us our clipping planes. To combine 2 matrices, we multiply them. clip[ 0] = modl[ 0] * proj[ 0] + modl[ 1] * proj[ 4] + modl[ 2] * proj[ 8] + modl[ 3] * proj[12]; clip[ 1] = modl[ 0] * proj[ 1] + modl[ 1] * proj[ 5] + modl[ 2] * proj[ 9] + modl[ 3] * proj[13]; clip[ 2] = modl[ 0] * proj[ 2] + modl[ 1] * proj[ 6] + modl[ 2] * proj[10] + modl[ 3] * proj[14]; clip[ 3] = modl[ 0] * proj[ 3] + modl[ 1] * proj[ 7] + modl[ 2] * proj[11] + modl[ 3] * proj[15]; clip[ 4] = modl[ 4] * proj[ 0] + modl[ 5] * proj[ 4] + modl[ 6] * proj[ 8] + modl[ 7] * proj[12]; clip[ 5] = modl[ 4] * proj[ 1] + modl[ 5] * proj[ 5] + modl[ 6] * proj[ 9] + modl[ 7] * proj[13]; clip[ 6] = modl[ 4] * proj[ 2] + modl[ 5] * proj[ 6] + modl[ 6] * proj[10] + modl[ 7] * proj[14]; clip[ 7] = modl[ 4] * proj[ 3] + modl[ 5] * proj[ 7] + modl[ 6] * proj[11] + modl[ 7] * proj[15]; clip[ 8] = modl[ 8] * proj[ 0] + modl[ 9] * proj[ 4] + modl[10] * proj[ 8] + modl[11] * proj[12]; clip[ 9] = modl[ 8] * proj[ 1] + modl[ 9] * proj[ 5] + modl[10] * proj[ 9] + modl[11] * proj[13]; clip[10] = modl[ 8] * proj[ 2] + modl[ 9] * proj[ 6] + modl[10] * proj[10] + modl[11] * proj[14]; clip[11] = modl[ 8] * proj[ 3] + modl[ 9] * proj[ 7] + modl[10] * proj[11] + modl[11] * proj[15]; clip[12] = modl[12] * proj[ 0] + modl[13] * proj[ 4] + modl[14] * proj[ 8] + modl[15] * proj[12]; clip[13] = modl[12] * proj[ 1] + modl[13] * proj[ 5] + modl[14] * proj[ 9] + modl[15] * proj[13]; clip[14] = modl[12] * proj[ 2] + modl[13] * proj[ 6] + modl[14] * proj[10] + modl[15] * proj[14]; clip[15] = modl[12] * proj[ 3] + modl[13] * proj[ 7] + modl[14] * proj[11] + modl[15] * proj[15]; // Now we actually want to get the sides of the frustum. To do this we take // the clipping planes we received above and extract the sides from them. // This will extract the RIGHT side of the frustum m_Frustum[RIGHT][A] = clip[ 3] - clip[ 0]; m_Frustum[RIGHT][B] = clip[ 7] - clip[ 4]; m_Frustum[RIGHT][C] = clip[11] - clip[ 8]; m_Frustum[RIGHT][D] = clip[15] - clip[12]; // Now that we have a normal (A,B,C) and a distance (D) to the plane, // we want to normalize that normal and distance. // Normalize the RIGHT side NormalizePlane(m_Frustum, RIGHT); // This will extract the LEFT side of the frustum m_Frustum[LEFT][A] = clip[ 3] + clip[ 0]; m_Frustum[LEFT][B] = clip[ 7] + clip[ 4]; m_Frustum[LEFT][C] = clip[11] + clip[ 8]; m_Frustum[LEFT][D] = clip[15] + clip[12]; // Normalize the LEFT side NormalizePlane(m_Frustum, LEFT); // This will extract the BOTTOM side of the frustum m_Frustum[BOTTOM][A] = clip[ 3] + clip[ 1]; m_Frustum[BOTTOM][B] = clip[ 7] + clip[ 5]; m_Frustum[BOTTOM][C] = clip[11] + clip[ 9]; m_Frustum[BOTTOM][D] = clip[15] + clip[13]; // Normalize the BOTTOM side NormalizePlane(m_Frustum, BOTTOM); // This will extract the TOP side of the frustum m_Frustum[TOP][A] = clip[ 3] - clip[ 1]; m_Frustum[TOP][B] = clip[ 7] - clip[ 5]; m_Frustum[TOP][C] = clip[11] - clip[ 9]; m_Frustum[TOP][D] = clip[15] - clip[13]; // Normalize the TOP side NormalizePlane(m_Frustum, TOP); // This will extract the BACK side of the frustum m_Frustum[BACK][A] = clip[ 3] - clip[ 2]; m_Frustum[BACK][B] = clip[ 7] - clip[ 6]; m_Frustum[BACK][C] = clip[11] - clip[10]; m_Frustum[BACK][D] = clip[15] - clip[14]; // Normalize the BACK side NormalizePlane(m_Frustum, BACK); // This will extract the FRONT side of the frustum m_Frustum[FRONT][A] = clip[ 3] + clip[ 2]; m_Frustum[FRONT][B] = clip[ 7] + clip[ 6]; m_Frustum[FRONT][C] = clip[11] + clip[10]; m_Frustum[FRONT][D] = clip[15] + clip[14]; // Normalize the FRONT side NormalizePlane(m_Frustum, FRONT); } // The code below will allow us to make checks within the frustum. For example, // if we want to see if a point, a sphere, or a cube lies inside of the frustum. // Because all of our planes point INWARDS (The normals are all pointing inside the frustum) // we then can assume that if a point is in FRONT of all of the planes, it's inside. ///////////////////////////////// POINT IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* ///// ///// This determines if a point is inside of the frustum ///// ///////////////////////////////// POINT IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* bool CFrustum::PointInFrustum( float x, float y, float z ) { // If you remember the plane equation (A*x + B*y + C*z + D = 0), then the rest // of this code should be quite obvious and easy to figure out yourself. // In case don't know the plane equation, it might be a good idea to look // at our Plane Collision tutorial at www.GameTutorials.com in OpenGL Tutorials. // I will briefly go over it here. (A,B,C) is the (X,Y,Z) of the normal to the plane. // They are the same thing... but just called ABC because you don't want to say: // (x*x + y*y + z*z + d = 0). That would be wrong, so they substitute them. // the (x, y, z) in the equation is the point that you are testing. The D is // The distance the plane is from the origin. The equation ends with "= 0" because // that is true when the point (x, y, z) is ON the plane. When the point is NOT on // the plane, it is either a negative number (the point is behind the plane) or a // positive number (the point is in front of the plane). We want to check if the point // is in front of the plane, so all we have to do is go through each point and make // sure the plane equation goes out to a positive number on each side of the frustum. // The result (be it positive or negative) is the distance the point is front the plane. // Go through all the sides of the frustum for(int i = 0; i < 6; i++ ) { // Calculate the plane equation and check if the point is behind a side of the frustum if(m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] <= 0) { // The point was behind a side, so it ISN'T in the frustum return false; } } // The point was inside of the frustum (In front of ALL the sides of the frustum) return true; } ///////////////////////////////// SPHERE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* ///// ///// This determines if a sphere is inside of our frustum by it's center and radius. ///// ///////////////////////////////// SPHERE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* bool CFrustum::SphereInFrustum( float x, float y, float z, float radius ) { // Now this function is almost identical to the PointInFrustum(), except we // now have to deal with a radius around the point. The point is the center of // the radius. So, the point might be outside of the frustum, but it doesn't // mean that the rest of the sphere is. It could be half and half. So instead of // checking if it's less than 0, we need to add on the radius to that. Say the // equation produced -2, which means the center of the sphere is the distance of // 2 behind the plane. Well, what if the radius was 5? The sphere is still inside, // so we would say, if(-2 < -5) then we are outside. In that case it's false, // so we are inside of the frustum, but a distance of 3. This is reflected below. // Go through all the sides of the frustum for(int i = 0; i < 6; i++ ) { // If the center of the sphere is farther away from the plane than the radius if( m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] <= -radius ) { // The distance was greater than the radius so the sphere is outside of the frustum return false; } } // The sphere was inside of the frustum! return true; } ///////////////////////////////// CUBE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* ///// ///// This determines if a cube is in or around our frustum by it's center and 1/2 it's length ///// ///////////////////////////////// CUBE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\* bool CFrustum::CubeInFrustum( float x, float y, float z, float size ) { // This test is a bit more work, but not too much more complicated. // Basically, what is going on is, that we are given the center of the cube, // and half the length. Think of it like a radius. Then we checking each point // in the cube and seeing if it is inside the frustum. If a point is found in front // of a side, then we skip to the next side. If we get to a plane that does NOT have // a point in front of it, then it will return false. // *Note* - This will sometimes say that a cube is inside the frustum when it isn't. // This happens when all the corners of the bounding box are not behind any one plane. // This is rare and shouldn't effect the overall rendering speed. for(int i = 0; i < 6; i++ ) { if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y - size) + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y - size) + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y + size) + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y + size) + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y - size) + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y - size) + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y + size) + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y + size) + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0) continue; // If we get here, it isn't in the frustum return false; } return true; } bool CFrustum::BlockInFrustum(float x, float z, float size) { const float b_height = 6.0f; for(int i = 0; i < 6; i++ ) { if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * 0.0f + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * 0.0f + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * b_height + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * b_height + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * 0.0f + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * 0.0f + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * b_height + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0) continue; if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * b_height + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0) continue; // If we get here, it isn't in the frustum return false; } return true; } }