#include "main_code.h" #include #include #include #include #include "include/Engine.h" #include "main_code.h" TMyApplication* Application; Matrix3f quatToMatrix(Vector4f q) { Matrix3f result; double sqw = q(3)*q(3); double sqx = q(0)*q(0); double sqy = q(1)*q(1); double sqz = q(2)*q(2); // invs (inverse square length) is only required if quaternion is not already normalised double invs = 1 / (sqx + sqy + sqz + sqw); result(0,0) = (sqx - sqy - sqz + sqw)*invs; // since sqw + sqx + sqy + sqz =1/invs*invs result(1,1) = (-sqx + sqy - sqz + sqw)*invs; result(2,2) = (-sqx - sqy + sqz + sqw)*invs; double tmp1 = q(0)*q(1); double tmp2 = q(2)*q(3); result(1, 0) = 2.0 * (tmp1 + tmp2)*invs; result(0, 1) = 2.0 * (tmp1 - tmp2)*invs; tmp1 = q(0)*q(2); tmp2 = q(1)*q(3); result(2,0) = 2.0 * (tmp1 - tmp2)*invs; result(0,2) = 2.0 * (tmp1 + tmp2)*invs; tmp1 = q(1)*q(2); tmp2 = q(0)*q(3); result(2, 1) = 2.0 * (tmp1 + tmp2)*invs; result(1, 2) = 2.0 * (tmp1 - tmp2)*invs; return result; } void TMyApplication::InnerInit() { Application = this; #ifdef TARGET_WIN32 #ifdef NDEBUG ST::PathToResources = "../../../assets/"; //ST::PathToResources = "resources/"; #else ST::PathToResources = "../../../assets/"; #endif #endif #ifdef TARGET_IOS ST::PathToResources = "assets/"; #endif if (Console != NULL) { *Console<<"APP INIT\n"; } srand (static_cast(time(NULL))); ResourceManager->ShaderManager.AddShader("DefaultShader", "shader1vertex.txt", "shader1fragment.txt"); ResourceManager->ShaderManager.AddShader("FrameShader", "frameshader_vertex.txt", "frameshader_fragment.txt"); ResourceManager->ShaderManager.AddShader("ColorShader", "color_vertex.txt", "color_fragment.txt"); ResourceManager->ShaderManager.AddShader("SSAA_4X", "SSAA_4X.vertex", "SSAA_4X.frag"); ResourceManager->ShaderManager.AddShader("ParallaxShader", "parallax_vertex.txt", "parallax_fragment.txt"); ResourceManager->ShaderManager.AddShader("Transparency", "Transparency.vertex", "Transparency.fragment"); ResourceManager->ShaderManager.AddShader("TransparencyPlusColor", "transparencyPlusColor.vertex", "transparencyPlusColor.fragment"); Renderer->PushShader("DefaultShader"); ResourceManager->TexList.AddTexture("console_bkg.bmp"); ResourceManager->TexList.AddTexture("owl-green.jpg"); ResourceManager->TexList.AddTexture("owl-green-height.png"); ResourceManager->TexList.AddTexture("owl-green-normal.png"); ResourceManager->TexList.AddTexture("pimgpsh.jpg"); ResourceManager->TexList.AddTexture("fabric-texture.jpg"); ResourceManager->TexList.AddTexture("fabric-normal-map.png"); ResourceManager->TexList.AddTexture("fabric-height-map.png"); ResourceManager->TexList.AddTexture("fabric-transparency-mask.png"); ResourceManager->TexList.AddTexture("5f.jpg"); ResourceManager->TexList.AddTexture("6f.jpg"); ResourceManager->TexList.AddTexture("7f.jpg"); { rect.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(-4096, 0, -4096)); rect.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(-4096, 0, 4096)); rect.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(4096, 0, 4096)); rect.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(-4096, 0, -4096)); rect.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(4096, 0, 4096)); rect.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(4096, 0, -4096)); rect.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 0)); rect.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 1)); rect.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(1, 1)); rect.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 0)); rect.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(1, 1)); rect.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(1, 0)); rect.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "pimgpsh.jpg"; rect.second.RefreshBuffer(); } { size_t const mapWidth = 2048; size_t const mapHeight = 2048; size_t const channelsCount = 4; char *heightMap = new char[mapWidth * mapHeight * channelsCount]; char *material = new char[mapWidth * mapHeight * channelsCount]; char *normalMap = new char[mapWidth * mapHeight * channelsCount]; for(size_t z = 0; z < mapHeight; z++) { for(size_t x = 0; x < mapWidth; x++) { size_t index = channelsCount * (z * mapWidth + x); heightMap[index + 0] = 0; heightMap[index + 1] = 0; heightMap[index + 2] = 0; heightMap[index + 3] = 255; material[index + 0] = 255; material[index + 1] = 255; material[index + 2] = 255; material[index + 3] = 0; normalMap[index + 0] = 128; normalMap[index + 1] = 128; normalMap[index + 2] = 255; normalMap[index + 3] = 255; } } double *heightMapF = new double[mapWidth * mapHeight]; const size_t threadsCount = 3; const double threadWidth = 4.0; const auto g = [this, mapWidth, mapHeight, channelsCount, threadWidth, threadsCount, heightMapF, material, normalMap](Vector2d start, Vector2d end, Vector3f &color) { start = start + Vector2d(mapWidth / 2, mapHeight / 2); end = end + Vector2d(mapWidth / 2, mapHeight / 2); const auto length = (end - start).norm(); const Vector2d e0 = (end - start).normalized(); const Vector2d e1(-e0.y(), e0.x()); std::vector corners; corners.push_back(start + threadWidth * e1); corners.push_back(start - threadWidth * e1); corners.push_back(end + threadWidth * e1); corners.push_back(end - threadWidth * e1); auto minXf = corners[0].x(); auto maxXf = corners[0].x(); auto minYf = corners[0].y(); auto maxYf = corners[0].y(); for(auto corner: corners) { if(corner.x() < minXf) {minXf = corner.x();} if(corner.x() > maxXf) {maxXf = corner.x();} if(corner.y() < minYf) {minYf = corner.y();} if(corner.y() > maxYf) {maxYf = corner.y();} } const auto minX = floor(minXf); const auto maxX = ceil(maxXf); const auto minY = floor(minYf); const auto maxY = floor(maxYf); const double r = threadWidth / 2; Matrix2d basisMatrix; basisMatrix << e0.x(), e0.y(), e1.x(), e1.y(); for(auto x = minX; x <= maxX; x++) { for(auto y = minY; y <= maxY; y++) { if(x < 0 || x >= mapWidth || y < 0 || y >= mapHeight) {continue;} Vector2d self = basisMatrix * Vector2d(x - start.x(), y - start.y()); if(self.x() >= 0 && self.x() <= length && self.y() >= -threadWidth && self.y() <= threadWidth) { const double phase = 6 * pi * self.x() / length; std::vector centers; auto maxH = -1.0f; Vector3d normal; for(size_t i = 0; i < threadsCount; i++) { Vector2d center = r * sin(phase + 2 * pi * i / threadsCount) * Vector2d(1, 0) + r * cos(phase + 2 * pi * i / threadsCount) * Vector2d(0, 1); auto temp = r * r - (self.y() - center.x()) * (self.y() - center.x()); if(temp < 0) {continue;} float h = sqrt(temp) + center.y(); if(h > maxH) { maxH = h; Vector3d center3d = self.x() * Vector3d(e0.x(), e0.y(), 0) + center.x() * Vector3d(e1.x(), e1.y(), 0) + center.y() * Vector3d(0, 0, 1); Vector3d intersection3d = self.x() * Vector3d(e0.x(), e0.y(), 0) + self.y() * Vector3d(e1.x(), e1.y(), 0) + maxH * Vector3d(0, 0, 1); normal = (intersection3d - center3d).normalized(); } } size_t index = y * mapWidth + x; if(heightMapF[index] > maxH / (2 * r)) {continue;} heightMapF[index] = maxH / (2 * r); material[4 * index] = 255 * color(0); material[4 * index + 1] = 255 * color(1); material[4 * index + 2] = 255 * color(2); material[4 * index + 3] = 255; normalMap[4 * index] = 255 * (normal.x() + 1) / 2; normalMap[4 * index + 1] = 255 * (normal.y() + 1) / 2; normalMap[4 * index + 2] = 255 * normal.z(); normalMap[4 * index + 3] = 255; } } } }; namespace pt = boost::property_tree; pt::ptree root; pt::read_json(ST::PathToResources + "lines.json", root); size_t counter = 0; for (auto line : root.get_child("lines")) { std::vector start; std::vector end; std::vector color; for (auto value : line.second.get_child("start")) { start.push_back(value.second.get_value()); } for (auto value : line.second.get_child("end")) { end.push_back(value.second.get_value()); } for (auto value : line.second.get_child("color")) { color.push_back(value.second.get_value()); } g(Vector2d(start[0] / 4, start[1] / 4), Vector2d(end[0] / 4, end[1] / 4), Vector3f(color[0], color[1], color[2])); counter++; //if(counter > 3000) { // break; //} } for(size_t i = 0; i < mapWidth; i++) { for(size_t j = 0; j < mapHeight; j++) { heightMap[4 * (i * mapWidth + j)] = 255 - 255 * heightMapF[i * mapWidth + j]; heightMap[4 * (i * mapWidth + j) + 1] = 255 - 255 * heightMapF[i * mapWidth + j]; heightMap[4 * (i * mapWidth + j) + 2] = 255 - 255 * heightMapF[i * mapWidth + j]; heightMap[4 * (i * mapWidth + j) + 3] = 255; } } delete[] heightMapF; SE::TTextureData heightMapTexture; heightMapTexture.Width = mapWidth; heightMapTexture.Height = mapHeight; heightMapTexture.Format = "bmp32"; heightMapTexture.DataSize = mapWidth * mapHeight * channelsCount; heightMapTexture.Data = boost::shared_array(heightMap); ResourceManager->TexList.AddTexture("HeightMapTexture", heightMapTexture); SE::TTextureData materialTexture; materialTexture.Width = mapWidth; materialTexture.Height = mapHeight; materialTexture.Format = "bmp32"; materialTexture.DataSize = mapWidth * mapHeight * channelsCount; materialTexture.Data = boost::shared_array(material); ResourceManager->TexList.AddTexture("MaterialTexture", materialTexture); SE::TTextureData normalMapTexture; normalMapTexture.Width = mapWidth; normalMapTexture.Height = mapHeight; normalMapTexture.Format = "bmp32"; normalMapTexture.DataSize = mapWidth * mapHeight * channelsCount; normalMapTexture.Data = boost::shared_array(normalMap); ResourceManager->TexList.AddTexture("NormalMapTexture", normalMapTexture); } { pair.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(-2048, 5, -2048)); pair.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(-2048, 5, 2048)); pair.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(2048, 5, 2048)); pair.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(-2048, 5, -2048)); pair.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(2048, 5, 2048)); pair.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(Vector3f(2048, 5, -2048)); pair.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 0)); pair.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 1)); pair.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(1, 1)); pair.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 0)); pair.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(1, 1)); pair.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(1, 0)); pair.second.RefreshBuffer(); pair.first.ShaderName = "ParallaxShader"; pair.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "MaterialTexture"; pair.first.SamplerMap["HeightMap"] = "HeightMapTexture"; pair.first.SamplerMap["NormalMap"] = "NormalMapTexture"; pair.first.SamplerMap["TransparencyMask"] = "MaterialTexture"; } Inited = true; } void TMyApplication::InnerDeinit() { Inited = false; Loaded = false; if (Console != NULL) { *Console<<"APP DEINIT\n"; } } void TMyApplication::InnerOnTapDown(Vector2f p) {} void TMyApplication::InnerOnTapUp(Vector2f p) {} void TMyApplication::InnerOnTapUpAfterMove(Vector2f p) {} void TMyApplication::InnerOnMove(Vector2f p, Vector2f shift) { phi += shift(1)*0.02f; if (phi < pi/12) { phi = pi / 12; } if (phi > pi / 2) { phi = pi / 2; } alpha -= shift(0)*0.02f; } void TMyApplication::OnFling(Vector2f v) { } void TMyApplication::OnMouseWheel(short int delta) { distance += delta; } void TMyApplication::InnerDraw() { Renderer->SwitchToScreen(); Renderer->SetPerspectiveProjection(pi / 6, 10.f, 10000.f); Renderer->SetFullScreenViewport(); Renderer->PushMatrix(); Renderer->TranslateMatrix(Vector3f(0, 0, -distance)); Vector4f quat1 = Vector4f(sin(phi / 2), 0, 0, cos(phi / 2)); Vector4f quat2 = Vector4f(0, sin(alpha / 2), 0, cos(alpha / 2)); Renderer->RotateMatrix(quat1); Renderer->RotateMatrix(quat2); glDisable(GL_DEPTH_TEST); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); CheckGlError(""); auto mat1 = quatToMatrix(quat1); auto mat2 = quatToMatrix(quat2); Vector3f lightPos = {0.f, 1.f, 1.f}; Vector3f eye = mat2 * (mat1 * Vector3f(0.0f, 0.f, -distance)); { TRenderParamsSetter params(rect.first); Renderer->DrawTriangleList(rect.second); } { TRenderParamsSetter params(pair.first); RenderUniform3fv("eye", eye.data()); RenderUniform3fv("lightPos", lightPos.data()); Matrix3f normMatrix = Renderer->GetModelviewMatrix().inverse().transpose().block<3, 3>(0, 0); RenderUniformMatrix3fv("NormalMatrix", false, normMatrix.data()); RenderUniformMatrix4fv("ModelViewMatrix", false, Renderer->GetModelviewMatrix().data()); RenderUniformMatrix3fv("ModelViewMatrix3x3", false, Renderer->GetModelviewMatrix().block<3, 3>(0, 0).data()); Renderer->DrawTriangleList(pair.second); } Renderer->PopMatrix(); CheckGlError(""); } void TMyApplication::InnerUpdate(size_t dt) {} bool TMyApplication::IsLoaded() { return Loaded; } bool TMyApplication::IsInited() { return Inited; }