#include "main_code.h" #include #include #include #include #include "include/Engine.h" #include "main_code.h" TMyApplication* Application; std::vector posArr; std::vector normArr; std::vector colorArr; std::vector texCoordArr; GLuint posBuffer; GLuint normBuffer; GLuint colorBuffer; GLuint texCoordBuffer; size_t posArrIndex = 0; size_t normArrIndex = 0; size_t colorArrIndex = 0; size_t texCoordArrIndex = 0; Matrix3f quatToMatrix(Vector4f q) { Matrix3f result; double sqw = q(3)*q(3); double sqx = q(0)*q(0); double sqy = q(1)*q(1); double sqz = q(2)*q(2); // invs (inverse square length) is only required if quaternion is not already normalised double invs = 1 / (sqx + sqy + sqz + sqw); result(0,0) = (sqx - sqy - sqz + sqw)*invs; // since sqw + sqx + sqy + sqz =1/invs*invs result(1,1) = (-sqx + sqy - sqz + sqw)*invs; result(2,2) = (-sqx - sqy + sqz + sqw)*invs; double tmp1 = q(0)*q(1); double tmp2 = q(2)*q(3); result(1, 0) = 2.0 * (tmp1 + tmp2)*invs; result(0, 1) = 2.0 * (tmp1 - tmp2)*invs; tmp1 = q(0)*q(2); tmp2 = q(1)*q(3); result(2,0) = 2.0 * (tmp1 - tmp2)*invs; result(0,2) = 2.0 * (tmp1 + tmp2)*invs; tmp1 = q(1)*q(2); tmp2 = q(0)*q(3); result(2, 1) = 2.0 * (tmp1 + tmp2)*invs; result(1, 2) = 2.0 * (tmp1 - tmp2)*invs; return result; } void TMyApplication::InnerInit() { Application = this; #ifdef TARGET_WIN32 #ifdef NDEBUG //ST::PathToResources = "resources/"; ST::PathToResources = "../../../assets/"; #else ST::PathToResources = "../../../assets/"; #endif #endif #ifdef TARGET_IOS ST::PathToResources = "assets/"; #endif if (Console != NULL) { *Console<<"APP INIT\n"; } srand (static_cast(time(NULL))); ResourceManager->ShaderManager.AddShader("DefaultShader", "shader1vertex.txt", "shader1fragment.txt"); ResourceManager->ShaderManager.AddShader("FrameShader", "frameshader_vertex.txt", "frameshader_fragment.txt"); ResourceManager->ShaderManager.AddShader("ColorShader", "color_vertex.txt", "color_fragment.txt"); ResourceManager->ShaderManager.AddShader("SSAA_4X", "SSAA_4X.vertex", "SSAA_4X.frag"); ResourceManager->ShaderManager.AddShader("ParallaxShader", "parallax_vertex.txt", "parallax_fragment.txt"); //ResourceManager->ShaderManager.AddShader("SimpleShadingNoTex", "simple_shading_no_tex.vertex", "simple_shading_no_tex.fragment"); ResourceManager->ShaderManager.AddShader("SimpleShading", "simple_shading.vertex", "simple_shading.fragment"); Renderer->PushShader("DefaultShader"); ResourceManager->TexList.AddTexture("console_bkg.bmp"); ResourceManager->TexList.AddTexture("background.jpg"); ResourceManager->TexList.AddTexture("pimgpsh.jpg"); ResourceManager->TexList.AddTexture("HeightMap.png"); ResourceManager->TexList.AddTexture("NormalMap.png"); ResourceManager->TexList.AddTexture("linesAll.png"); ResourceManager->TexList.AddTexture("clean-fabric-texture-4-780x585.jpg"); ResourceManager->TexList.AddTexture("free-detailed-tiled-rope-texture-3d-model-low-poly-blend.png"); /* fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].reserve(90000000); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].reserve(90000000); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].reserve(90000000); fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].reserve(90000000); */ posArr.resize(20000000); normArr.resize(20000000); texCoordArr.resize(20000000); colorArr.resize(20000000); ResourceManager->FrameManager.AddFrameRenderBuffer("LevelBuffer", 512, 512); Vector2f const bottomLeft(-500, -500); float const W = 1000; float const H = 1000; Vector2f const backgroundBottomLeft(-3000, -3000); float const backgroundW = 6000; float const backgroundH = 6000; { //resolution of background image //float const imageW = 512; //float const imageH = 512; float const imageW = 2048; float const imageH = 2048; background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[1])); background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[1] + backgroundH)); background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[1] + backgroundH)); background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[0] + backgroundH)); background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[0])); background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[0])); float const tw = backgroundW / imageW; float const th = backgroundH / imageH; background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, th)); background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, 0)); background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, 0)); background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, 0)); background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, th)); background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, th)); background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1)); background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1)); background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1)); background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1)); background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1)); background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1)); } auto findPlaneBasis = [] (const Vector3f &normal) { std::vector result; Vector3f e0, e1; if(normal.z() != 0) { e0 = Vector3f(1, 0, -normal.x() / normal.z()).normalized(); e1 = Vector3f(0, 1, -normal.y() / normal.z()); } else if(normal.y() != 0) { e0 = Vector3f(1, -normal.x() / normal.y(), 0).normalized(); e1 = Vector3f(0, -normal.z() / normal.y(), 1); } else { e0 = Vector3f(-normal.y() / normal.x(), 1, 0).normalized(); e1 = Vector3f(-normal.z() / normal.x(), 0, 1); } e1 = (e1 - (e1.dot(e0) / e0.dot(e0)) * e0).normalized(); result.push_back(e0); result.push_back(e1); return result; }; { //float const R = 3; float const R = 0; //float const r = 4; //float const r = 16; float const r = 18; //size_t const threadsCount = 3; size_t const threadsCount = 1; size_t const edgesCount = 6; //float const angle = pi / 6; float const angle = 0; Vector3f up(0, 1, 0); up.normalize(); //size_t const step = 5; float const step = 60; const Vector3f vshift = Vector3f(0.f, 0.002f, 0.f); int vShiftVal = 0; auto g = [&] (Vector3f start, Vector3f end, const Vector3f &color, int x) { Vector3f direction = (end - start).normalized(); end = end - (r + R) * direction; float iterationsCount = (end - start).norm() / step; auto e = findPlaneBasis(up); std::vector threadCenters; std::vector> threads; for(auto i = 0; i < threadsCount; i++) { std::vector edges; Vector3f threadCenter = R * (e[0] * cosf(i * 2 * pi / threadsCount) + e[1] * sinf(i * 2 * pi / threadsCount)); threadCenters.push_back(threadCenter); for(auto j = 0; j < edgesCount; j++) { auto verticeCenter = threadCenter + r * (e[0] * cosf(j * 2 * pi / edgesCount) + e[1] * sinf(j * 2 * pi / edgesCount)); edges.push_back(Vector4f(verticeCenter.x(), verticeCenter.y(), verticeCenter.z(), 1)); } threads.push_back(edges); } auto rotateMatrix1 = ( Translation3f((r + R) * direction) * AngleAxis( -pi / 8, direction.cross(up).normalized() ) * Translation3f(-(r + R) * direction) ).matrix(); auto matrix = ( Translation3f((r + R) * up) * AngleAxis( angle, direction ) * Translation3f(-(r + R) * up) * Translation3f(static_cast(step) * direction) ).matrix(); auto rotateMatrix2 = ( Translation3f(static_cast(step) * direction * iterationsCount) * Translation3f((r + R) * direction) * AngleAxis( -pi / 8, direction.cross(up).normalized() ) * Translation3f(-(r + R) * direction) * Translation3f(-static_cast(step) * direction * iterationsCount) ).matrix(); for(int i = -2; i < static_cast(iterationsCount) + 2; i++) { std::vector> newThreads; for(auto j = 0; j < threadsCount; j++) { auto edges = threads[j]; std::vector newEdges; for(auto k = 0; k < edgesCount; k++) { if(i < 0) { newEdges.push_back(rotateMatrix1 * edges[k]); } else if(i < iterationsCount) { newEdges.push_back(matrix * edges[k]); } else { newEdges.push_back(rotateMatrix2 * edges[k]); } } newThreads.push_back(newEdges); auto threadCenter_ = Vector4f(threadCenters[j].x(), threadCenters[j].y(), threadCenters[j].z(), 1); auto threadCenter = threadCenter_.head(3); Vector3f newThreadCenter; if (i < 0) { newThreadCenter = (rotateMatrix1 * threadCenter_).head(3); } else if (i < iterationsCount) { newThreadCenter = (matrix * threadCenter_).head(3); } else { newThreadCenter = (rotateMatrix2 * threadCenter_).head(3); } threadCenters[j] = newThreadCenter; for(auto k = 0; k < edgesCount; k++) { auto vk = edges[k].head(3); auto vk1 = edges[(k + 1) % edgesCount].head(3); auto nvk = newEdges[k].head(3); auto nvk1 = newEdges[(k + 1) % edgesCount].head(3); posArr[posArrIndex] = start + vk + vshift*x; posArrIndex++; posArr[posArrIndex] = start + vk1 + vshift * x; posArrIndex++; //posArr[posArrIndex] = start + nvk; //posArrIndex++; //posArr[posArrIndex] = start + vk1; //posArrIndex++; posArr[posArrIndex] = start + nvk1 + vshift * x; posArrIndex++; posArr[posArrIndex] = start + nvk + vshift*x; posArrIndex++; normArr[normArrIndex] = vk - threadCenter; normArrIndex++; normArr[normArrIndex] = vk1 - threadCenter; normArrIndex++; //normArr[normArrIndex] = nvk - newThreadCenter; //normArrIndex++; //normArr[normArrIndex] = vk1 - threadCenter; //normArrIndex++; normArr[normArrIndex] = nvk1 - newThreadCenter; normArrIndex++; normArr[normArrIndex] = nvk - newThreadCenter; normArrIndex++; texCoordArr[texCoordArrIndex] = Vector2f((float)(k) / (edgesCount), (i + 2) / 4.f); texCoordArrIndex++; texCoordArr[texCoordArrIndex] = Vector2f((float)(k+1) / (edgesCount), (i + 2) / 4.f); texCoordArrIndex++; //texCoordArr[texCoordArrIndex] = Vector2f(0.1, 0.2); //texCoordArrIndex++; //texCoordArr[texCoordArrIndex] = Vector2f(0.2, 0.1); //texCoordArrIndex++; texCoordArr[texCoordArrIndex] = Vector2f((float)(k + 1) / (edgesCount), (i + 3) / 4.f); texCoordArrIndex++; texCoordArr[texCoordArrIndex] = Vector2f((float)k / (edgesCount), (i + 3) / 4.f); texCoordArrIndex++; colorArr[colorArrIndex] = color; colorArrIndex++; colorArr[colorArrIndex] = color; colorArrIndex++; colorArr[colorArrIndex] = color; colorArrIndex++; //colorArr[colorArrIndex] = color; //colorArrIndex++; colorArr[colorArrIndex] = color; colorArrIndex++; //colorArr[colorArrIndex] = color; //colorArrIndex++; /* fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk1); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk1); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk1); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((vk - threadCenter)); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((vk1 - threadCenter)); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((nvk - newThreadCenter)); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((vk1 - threadCenter)); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((nvk1 - newThreadCenter)); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((nvk - newThreadCenter)); fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.1, 0.1)); fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.2, 0.1)); fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.1, 0.2)); fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.2, 0.1)); fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.2, 0.2)); fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.1, 0.2)); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color); */ } } threads = newThreads; } }; { namespace pt = boost::property_tree; pt::ptree root; //pt::read_json(ST::PathToResources + "lines.json", root); //pt::read_json(ST::PathToResources + "lines100500.json", root); pt::read_json(ST::PathToResources + "lines100500.json", root); int x = 0; for(auto line: root.get_child("lines")) { std::vector start; std::vector end; std::vector color; for(auto value: line.second.get_child("start")) { start.push_back(value.second.get_value()); } for (auto value : line.second.get_child("end")) { end.push_back(value.second.get_value()); } for (auto value : line.second.get_child("color")) { color.push_back(value.second.get_value()); } g(Vector3f(start[0], 0, start[1]), Vector3f(end[0], 0, end[1]), Vector3f(color[0], color[1], color[2]), x); x++; } } } background.first.ShaderName ="DefaultShader"; fabricRender.first.ShaderName = "SimpleShading"; //fabricRender.first.ShaderName = "SimpleShadingNoTex"; /* * Line below should be in tes-engine/include/ShaderManager/ShaderManager.h */ std::string const CONST_STRING_HEIGHTMAP_UNIFORM = "HeightMap"; background.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "pimgpsh.jpg"; fabricRender.first.SamplerMap[CONST_STRING_NORMALMAP_UNIFORM] = "NormalMap.png"; fabricRender.first.SamplerMap[CONST_STRING_HEIGHTMAP_UNIFORM] = "HeightMap.png"; //fabricRender.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "clean-fabric-texture-4-780x585.jpg"; fabricRender.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "free-detailed-tiled-rope-texture-3d-model-low-poly-blend.png"; fabricRender.first.Vec4Map[CONST_STRING_LIGHT_DIRECTION_UNIFORM] = Vector4f(0, -1, 0, 0); background.second.RefreshBuffer(); //fabricRender.second.RefreshBuffer(); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].clear(); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].clear(); fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].clear(); fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].clear(); glGenBuffers(1, &posBuffer); glBindBuffer(GL_ARRAY_BUFFER, posBuffer); glBufferData(GL_ARRAY_BUFFER, posArr.size() * 12, &posArr[0], GL_STATIC_DRAW); glGenBuffers(1, &normBuffer); glBindBuffer(GL_ARRAY_BUFFER, normBuffer); glBufferData(GL_ARRAY_BUFFER, normArr.size() * 12, &normArr[0], GL_STATIC_DRAW); glGenBuffers(1, &colorBuffer); glBindBuffer(GL_ARRAY_BUFFER, colorBuffer); glBufferData(GL_ARRAY_BUFFER, colorArr.size() * 12, &colorArr[0], GL_STATIC_DRAW); glGenBuffers(1, &texCoordBuffer); glBindBuffer(GL_ARRAY_BUFFER, texCoordBuffer); glBufferData(GL_ARRAY_BUFFER, texCoordArr.size() * 8, &texCoordArr[0], GL_STATIC_DRAW); glDisable(GL_DEPTH_TEST); Inited = true; } void TMyApplication::InnerDeinit() { Inited = false; Loaded = false; if (Console != NULL) { *Console<<"APP DEINIT\n"; } } void TMyApplication::InnerOnTapDown(Vector2f p) { posArr.clear(); normArr.clear(); colorArr.clear(); //fabricRender.second.Data.Vec2CoordArr.clear(); //fabricRender.second.Data.Vec3CoordArr.clear(); } void TMyApplication::InnerOnTapUp(Vector2f p) { } void TMyApplication::InnerOnTapUpAfterMove(Vector2f p) { } void TMyApplication::InnerOnMove(Vector2f p, Vector2f shift) { phi += shift(1)*0.02f; if (phi < pi/12) { phi = pi / 12; } if (phi > pi / 2) { phi = pi / 2; } alpha -= shift(0)*0.02f; } void TMyApplication::OnFling(Vector2f v) { } void TMyApplication::OnMouseWheel(short int delta) { distance += delta; /*if (distance > 2500) { distance = 2500; }*/ if (distance < 100) { distance = 100; } } void TMyApplication::InnerDraw() { Renderer->SetPerspectiveProjection(pi / 6, 100.f, 40000.f); Renderer->SetFullScreenViewport(); Renderer->PushMatrix(); Renderer->TranslateMatrix(Vector3f(0, 0, -distance)); Vector4f quat1 = Vector4f(sin(phi / 2), 0, 0, cos(phi / 2)); Vector4f quat2 = Vector4f(0, sin(alpha / 2), 0, cos(alpha / 2)); Renderer->RotateMatrix(quat1); Renderer->RotateMatrix(quat2); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); CheckGlError(""); auto mat1 = quatToMatrix(quat1); auto mat2 = quatToMatrix(quat2); Vector3f lightPos = {0.f, 1.f, 1.f}; Vector3f eye = mat2 * mat1 * Vector3f(0.0f, 0.f, -distance); { TRenderParamsSetter params(background.first); RenderUniform3fv("eye", eye.data()); RenderUniform3fv("lightPos", lightPos.data()); Matrix3f normMatrix = Renderer->GetModelviewMatrix().inverse().transpose().block<3, 3>(0, 0); RenderUniformMatrix3fv("NormalMatrix", false, normMatrix.data()); RenderUniformMatrix4fv("ModelViewMatrix", false, Renderer->GetModelviewMatrix().data()); RenderUniformMatrix3fv("ModelViewMatrix3x3", false, Renderer->GetModelviewMatrix().block<3, 3>(0, 0).data()); Renderer->DrawTriangleList(background.second); } //glEnable(GL_CULL_FACE); { TRenderParamsSetter params(fabricRender.first); RenderUniform3fv("eye", eye.data()); RenderUniform3fv("lightPos", lightPos.data()); Matrix3f normMatrix = Renderer->GetModelviewMatrix().inverse().transpose().block<3,3>(0,0); RenderUniformMatrix3fv("NormalMatrix", false, normMatrix.data()); RenderUniformMatrix4fv("ModelViewMatrix", false, Renderer->GetModelviewMatrix().data()); RenderUniformMatrix3fv("ModelViewMatrix3x3", false, Renderer->GetModelviewMatrix().block<3,3>(0,0).data()); glBindBuffer(GL_ARRAY_BUFFER, posBuffer); VertexAttribPointer3fv(CONST_STRING_POSITION_ATTRIB, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, normBuffer); VertexAttribPointer3fv(CONST_STRING_NORMAL_ATTRIB, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, colorBuffer); VertexAttribPointer3fv(CONST_STRING_COLOR_ATTRIB, 0, NULL); glBindBuffer(GL_ARRAY_BUFFER, texCoordBuffer); VertexAttribPointer2fv(CONST_STRING_TEXCOORD_ATTRIB, 0, NULL); glDrawArrays(GL_QUADS, 0, posArrIndex); //Renderer->DrawTriangleList(fabricRender.second); } Renderer->PopMatrix(); CheckGlError(""); } void TMyApplication::InnerUpdate(size_t dt) { } bool TMyApplication::IsLoaded() { return Loaded; } bool TMyApplication::IsInited() { return Inited; }