422 lines
15 KiB
Plaintext
Executable File
422 lines
15 KiB
Plaintext
Executable File
#version 410 compatibility
|
|
#define SMAA_PIXEL_SIZE vec2(1.0 / 512.0, 1.0 / 512.0)
|
|
|
|
|
|
#define SMAA_THRESHOLD 0.05
|
|
#define SMAA_MAX_SEARCH_STEPS 32
|
|
#define SMAA_MAX_SEARCH_STEPS_DIAG 16
|
|
#define SMAA_CORNER_ROUNDING 25
|
|
|
|
|
|
#ifndef SMAA_DEPTH_THRESHOLD
|
|
#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
|
|
#endif
|
|
|
|
|
|
#ifndef SMAA_REPROJECTION
|
|
#define SMAA_REPROJECTION 0
|
|
#endif
|
|
|
|
#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0
|
|
|
|
|
|
#ifndef SMAA_AREATEX_MAX_DISTANCE
|
|
#define SMAA_AREATEX_MAX_DISTANCE 16
|
|
#endif
|
|
#ifndef SMAA_AREATEX_MAX_DISTANCE_DIAG
|
|
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
|
|
#endif
|
|
#define SMAA_AREATEX_PIXEL_SIZE (1.0 / vec2(160.0, 560.0))
|
|
#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)
|
|
|
|
|
|
/* --- Define section is over ---- */
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Diagonal Search Functions
|
|
|
|
/**
|
|
* These functions allows to perform diagonal pattern searches.
|
|
*/
|
|
float SMAASearchDiag1(sampler2D edgesTex, vec2 texcoord, vec2 dir, float c) {
|
|
texcoord += dir * SMAA_PIXEL_SIZE;
|
|
vec2 e = vec2(0.0, 0.0);
|
|
float i;
|
|
for (i = 0.0; i < float(SMAA_MAX_SEARCH_STEPS_DIAG); i++) {
|
|
e.rg = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
|
|
//SMAA_FLATTEN
|
|
if (dot(e, vec2(1.0, 1.0)) < 1.9) break;
|
|
|
|
texcoord += dir * SMAA_PIXEL_SIZE;
|
|
}
|
|
return i + float(e.g > 0.9) * c;
|
|
}
|
|
|
|
float SMAASearchDiag2(sampler2D edgesTex, vec2 texcoord, vec2 dir, float c) {
|
|
texcoord += dir * SMAA_PIXEL_SIZE;
|
|
vec2 e = vec2(0.0, 0.0);
|
|
float i;
|
|
for (i = 0.0; i < float(SMAA_MAX_SEARCH_STEPS_DIAG); i++) {
|
|
e.g = textureLod(edgesTex, texcoord, 0.0).g;
|
|
e.r = textureLodOffset(edgesTex, texcoord, 0.0, ivec2(1, 0)).r;
|
|
|
|
//SMAA_FLATTEN
|
|
if (dot(e, vec2(1.0, 1.0)) < 1.9) break;
|
|
|
|
texcoord += dir * SMAA_PIXEL_SIZE;
|
|
}
|
|
return i + float(e.g > 0.9) * c;
|
|
}
|
|
|
|
/**
|
|
* Similar to SMAAArea, this calculates the area corresponding to a certain
|
|
* diagonal distance and crossing edges 'e'.
|
|
*/
|
|
vec2 SMAAAreaDiag(sampler2D areaTex, vec2 dist, vec2 e, float offset) {
|
|
vec2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE_DIAG) * e + dist;
|
|
|
|
// We do a scale and bias for mapping to texel space:
|
|
texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + (0.5 * SMAA_AREATEX_PIXEL_SIZE);
|
|
|
|
// Diagonal areas are on the second half of the texture:
|
|
texcoord.x += 0.5;
|
|
|
|
// Move to proper place, according to the subpixel offset:
|
|
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
|
|
|
|
|
|
return textureLod(areaTex, texcoord, 0.0).rg;
|
|
}
|
|
|
|
/**
|
|
* This searches for diagonal patterns and returns the corresponding weights.
|
|
*/
|
|
vec2 SMAACalculateDiagWeights(sampler2D edgesTex, sampler2D areaTex, vec2 texcoord, vec2 e, ivec4 subsampleIndices) {
|
|
vec2 weights = vec2(0.0, 0.0);
|
|
|
|
vec2 d;
|
|
d.x = e.r > 0.0? SMAASearchDiag1(edgesTex, texcoord, vec2(-1.0, 1.0), 1.0) : 0.0;
|
|
d.y = SMAASearchDiag1(edgesTex, texcoord, vec2(1.0, -1.0), 0.0);
|
|
|
|
//SMAA_BRANCH
|
|
if (d.r + d.g > 2.0) { // d.r + d.g + 1 > 3
|
|
vec4 coords = fma(vec4(-d.r, d.r, d.g, -d.g), SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
|
|
|
|
vec4 c;
|
|
c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g;
|
|
c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, 0)).r;
|
|
c.z = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).g;
|
|
c.w = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, -1)).r;
|
|
vec2 e = 2.0 * c.xz + c.yw;
|
|
float t = float(SMAA_MAX_SEARCH_STEPS_DIAG) - 1.0;
|
|
e *= step(d.rg, vec2(t, t));
|
|
|
|
weights += SMAAAreaDiag(areaTex, d, e, float(subsampleIndices.z));
|
|
}
|
|
|
|
d.x = SMAASearchDiag2(edgesTex, texcoord, vec2(-1.0, -1.0), 0.0);
|
|
float right = textureLodOffset(edgesTex, texcoord, 0.0, ivec2(1, 0)).r;
|
|
d.y = right > 0.0? SMAASearchDiag2(edgesTex, texcoord, vec2(1.0, 1.0), 1.0) : 0.0;
|
|
|
|
//SMAA_BRANCH
|
|
if (d.r + d.g > 2.0) { // d.r + d.g + 1 > 3
|
|
vec4 coords = fma(vec4(-d.r, -d.r, d.g, d.g), SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
|
|
|
|
vec4 c;
|
|
c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g;
|
|
c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, -1)).r;
|
|
c.zw = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).gr;
|
|
vec2 e = 2.0 * c.xz + c.yw;
|
|
float t = float(SMAA_MAX_SEARCH_STEPS_DIAG) - 1.0;
|
|
e *= step(d.rg, vec2(t, t));
|
|
|
|
weights += SMAAAreaDiag(areaTex, d, e, float(subsampleIndices.w)).gr;
|
|
}
|
|
|
|
return weights;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Horizontal/Vertical Search Functions
|
|
|
|
/**
|
|
* This allows to determine how much length should we add in the last step
|
|
* of the searches. It takes the bilinearly interpolated edge (see
|
|
* @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
|
|
* crossing edges are active.
|
|
*/
|
|
float SMAASearchLength(sampler2D searchTex, vec2 e, float bias, float scale) {
|
|
// Not required if searchTex accesses are set to point:
|
|
// vec2 SEARCH_TEX_PIXEL_SIZE = 1.0 / vec2(66.0, 33.0);
|
|
// e = vec2(bias, 0.0) + 0.5 * SEARCH_TEX_PIXEL_SIZE +
|
|
// e * vec2(scale, 1.0) * vec2(64.0, 32.0) * SEARCH_TEX_PIXEL_SIZE;
|
|
e.r = bias + e.r * scale;
|
|
e.g = -e.g;
|
|
return 255.0 * textureLod(searchTex, e, 0.0).r;
|
|
}
|
|
|
|
/**
|
|
* Horizontal/vertical search functions for the 2nd pass.
|
|
*/
|
|
float SMAASearchXLeft(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
|
/**
|
|
* @PSEUDO_GATHER4
|
|
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
|
|
* sample between edge, thus fetching four edges in a row.
|
|
* Sampling with different offsets in each direction allows to disambiguate
|
|
* which edges are active from the four fetched ones.
|
|
*/
|
|
vec2 e = vec2(0.0, 1.0);
|
|
while (texcoord.x > end &&
|
|
e.g > 0.8281 && // Is there some edge not activated?
|
|
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
texcoord -= vec2(2.0, 0.0) * SMAA_PIXEL_SIZE;
|
|
}
|
|
|
|
// We correct the previous (-0.25, -0.125) offset we applied:
|
|
texcoord.x += 0.25 * SMAA_PIXEL_SIZE.x;
|
|
|
|
// The searches are bias by 1, so adjust the coords accordingly:
|
|
texcoord.x += SMAA_PIXEL_SIZE.x;
|
|
|
|
// Disambiguate the length added by the last step:
|
|
texcoord.x += 2.0 * SMAA_PIXEL_SIZE.x; // Undo last step
|
|
texcoord.x -= SMAA_PIXEL_SIZE.x * SMAASearchLength(searchTex, e, 0.0, 0.5);
|
|
|
|
return texcoord.x;
|
|
}
|
|
|
|
float SMAASearchXRight(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
|
vec2 e = vec2(0.0, 1.0);
|
|
while (texcoord.x < end &&
|
|
e.g > 0.8281 && // Is there some edge not activated?
|
|
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
texcoord += vec2(2.0, 0.0) * SMAA_PIXEL_SIZE;
|
|
}
|
|
|
|
texcoord.x -= 0.25 * SMAA_PIXEL_SIZE.x;
|
|
texcoord.x -= SMAA_PIXEL_SIZE.x;
|
|
texcoord.x -= 2.0 * SMAA_PIXEL_SIZE.x;
|
|
texcoord.x += SMAA_PIXEL_SIZE.x * SMAASearchLength(searchTex, e, 0.5, 0.5);
|
|
return texcoord.x;
|
|
}
|
|
|
|
float SMAASearchYUp(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
|
vec2 e = vec2(1.0, 0.0);
|
|
while (texcoord.y > end &&
|
|
e.r > 0.8281 && // Is there some edge not activated?
|
|
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
texcoord -= vec2(0.0, 2.0) * SMAA_PIXEL_SIZE;
|
|
}
|
|
|
|
texcoord.y += 0.25 * SMAA_PIXEL_SIZE.y;
|
|
texcoord.y += SMAA_PIXEL_SIZE.y;
|
|
texcoord.y += 2.0 * SMAA_PIXEL_SIZE.y;
|
|
texcoord.y -= SMAA_PIXEL_SIZE.y * SMAASearchLength(searchTex, e.gr, 0.0, 0.5);
|
|
return texcoord.y;
|
|
}
|
|
|
|
float SMAASearchYDown(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
|
|
vec2 e = vec2(1.0, 0.0);
|
|
while (texcoord.y < end &&
|
|
e.r > 0.8281 && // Is there some edge not activated?
|
|
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
|
|
e = textureLod(edgesTex, texcoord, 0.0).rg;
|
|
texcoord += vec2(0.0, 2.0) * SMAA_PIXEL_SIZE;
|
|
}
|
|
|
|
texcoord.y -= 0.25 * SMAA_PIXEL_SIZE.y;
|
|
texcoord.y -= SMAA_PIXEL_SIZE.y;
|
|
texcoord.y -= 2.0 * SMAA_PIXEL_SIZE.y;
|
|
texcoord.y += SMAA_PIXEL_SIZE.y * SMAASearchLength(searchTex, e.gr, 0.5, 0.5);
|
|
return texcoord.y;
|
|
}
|
|
|
|
/**
|
|
* Ok, we have the distance and both crossing edges. So, what are the areas
|
|
* at each side of current edge?
|
|
*/
|
|
vec2 SMAAArea(sampler2D areaTex, vec2 dist, float e1, float e2, float offset) {
|
|
// Rounding prevents precision errors of bilinear filtering:
|
|
vec2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE) * round(4.0 * vec2(e1, e2)) + dist;
|
|
|
|
// We do a scale and bias for mapping to texel space:
|
|
texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + (0.5 * SMAA_AREATEX_PIXEL_SIZE);
|
|
|
|
// Move to proper place, according to the subpixel offset:
|
|
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
|
|
|
|
|
|
return textureLod(areaTex, texcoord, 0.0).rg;
|
|
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Corner Detection Functions
|
|
|
|
void SMAADetectHorizontalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec2 texcoord, vec2 d) {
|
|
#if SMAA_CORNER_ROUNDING < 100 || SMAA_FORCE_CORNER_DETECTION == 1
|
|
vec4 coords = fma(vec4(d.x, 0.0, d.y, 0.0),
|
|
SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
|
|
vec2 e;
|
|
e.r = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(0.0, 1.0)).r;
|
|
bool left = abs(d.x) < abs(d.y);
|
|
e.g = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(0.0, -2.0)).r;
|
|
if (left) weights *= clamp(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e, 0.0, 1.0);
|
|
|
|
e.r = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2(1.0, 1.0)).r;
|
|
e.g = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2(1.0, -2.0)).r;
|
|
if (!left) weights *= clamp(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e, 0.0, 1.0);
|
|
#endif
|
|
}
|
|
|
|
void SMAADetectVerticalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec2 texcoord, vec2 d) {
|
|
#if SMAA_CORNER_ROUNDING < 100 || SMAA_FORCE_CORNER_DETECTION == 1
|
|
vec4 coords = fma(vec4(0.0, d.x, 0.0, d.y),
|
|
SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
|
|
vec2 e;
|
|
e.r = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 1.0, 0.0)).g;
|
|
bool left = abs(d.x) < abs(d.y);
|
|
e.g = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-2.0, 0.0)).g;
|
|
if (left) weights *= clamp(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e, 0.0, 1.0);
|
|
|
|
e.r = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1.0, 1.0)).g;
|
|
e.g = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2(-2.0, 1.0)).g;
|
|
if (!left) weights *= clamp(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e, 0.0, 1.0);
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Blending Weight Calculation Pixel Shader (Second Pass)
|
|
|
|
vec4 SMAABlendingWeightCalculationPS(vec2 texcoord,
|
|
vec2 pixcoord,
|
|
vec4 offset[3],
|
|
sampler2D edgesTex,
|
|
sampler2D areaTex,
|
|
sampler2D searchTex,
|
|
ivec4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
|
|
vec4 weights = vec4(0.0, 0.0, 0.0, 0.0);
|
|
|
|
vec2 e = texture(edgesTex, texcoord).rg;
|
|
|
|
//SMAA_BRANCH
|
|
if (e.g > 0.0) { // Edge at north
|
|
#if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
|
|
// Diagonals have both north and west edges, so searching for them in
|
|
// one of the boundaries is enough.
|
|
weights.rg = SMAACalculateDiagWeights(edgesTex, areaTex, texcoord, e, subsampleIndices);
|
|
|
|
// We give priority to diagonals, so if we find a diagonal we skip
|
|
// horizontal/vertical processing.
|
|
//SMAA_BRANCH
|
|
if (dot(weights.rg, vec2(1.0, 1.0)) == 0.0) {
|
|
#endif
|
|
|
|
vec2 d;
|
|
|
|
// Find the distance to the left:
|
|
vec2 coords;
|
|
coords.x = SMAASearchXLeft(edgesTex, searchTex, offset[0].xy, offset[2].x);
|
|
coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_PIXEL_SIZE.y (@CROSSING_OFFSET)
|
|
d.x = coords.x;
|
|
|
|
// Now fetch the left crossing edges, two at a time using bilinear
|
|
// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
|
|
// discern what value each edge has:
|
|
float e1 = textureLod(edgesTex, coords, 0.0).r;
|
|
|
|
// Find the distance to the right:
|
|
coords.x = SMAASearchXRight(edgesTex, searchTex, offset[0].zw, offset[2].y);
|
|
d.y = coords.x;
|
|
|
|
// We want the distances to be in pixel units (doing this here allow to
|
|
// better interleave arithmetic and memory accesses):
|
|
d = d / SMAA_PIXEL_SIZE.x - pixcoord.x;
|
|
|
|
// SMAAArea below needs a sqrt, as the areas texture is compressed
|
|
// quadratically:
|
|
vec2 sqrt_d = sqrt(abs(d));
|
|
|
|
// Fetch the right crossing edges:
|
|
float e2 = textureLodOffset(edgesTex, coords, 0.0, ivec2(1, 0)).r;
|
|
|
|
// Ok, we know how this pattern looks like, now it is time for getting
|
|
// the actual area:
|
|
weights.rg = SMAAArea(areaTex, sqrt_d, e1, e2, float(subsampleIndices.y));
|
|
|
|
// Fix corners:
|
|
SMAADetectHorizontalCornerPattern(edgesTex, weights.rg, texcoord, d);
|
|
|
|
#if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
|
|
} else
|
|
e.r = 0.0; // Skip vertical processing.
|
|
#endif
|
|
}
|
|
|
|
//SMAA_BRANCH
|
|
if (e.r > 0.0) { // Edge at west
|
|
vec2 d;
|
|
|
|
// Find the distance to the top:
|
|
vec2 coords;
|
|
coords.y = SMAASearchYUp(edgesTex, searchTex, offset[1].xy, offset[2].z);
|
|
coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_PIXEL_SIZE.x;
|
|
d.x = coords.y;
|
|
|
|
// Fetch the top crossing edges:
|
|
float e1 = textureLod(edgesTex, coords, 0.0).g;
|
|
|
|
// Find the distance to the bottom:
|
|
coords.y = SMAASearchYDown(edgesTex, searchTex, offset[1].zw, offset[2].w);
|
|
d.y = coords.y;
|
|
|
|
// We want the distances to be in pixel units:
|
|
d = d / SMAA_PIXEL_SIZE.y - pixcoord.y;
|
|
|
|
// SMAAArea below needs a sqrt, as the areas texture is compressed
|
|
// quadratically:
|
|
vec2 sqrt_d = sqrt(abs(d));
|
|
|
|
// Fetch the bottom crossing edges:
|
|
float e2 = textureLodOffset(edgesTex, coords, 0.0, ivec2(0, 1)).g;
|
|
|
|
// Get the area for this direction:
|
|
weights.ba = SMAAArea(areaTex, sqrt_d, e1, e2, float(subsampleIndices.x));
|
|
|
|
// Fix corners:
|
|
SMAADetectVerticalCornerPattern(edgesTex, weights.ba, texcoord, d);
|
|
|
|
//return vec4(weights.ba, 0.0, 1.0);
|
|
}
|
|
|
|
return weights;
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ------------- Header is over -------------- */
|
|
|
|
|
|
uniform sampler2D edge_tex;
|
|
uniform sampler2D area_tex;
|
|
uniform sampler2D search_tex;
|
|
in vec2 texcoord;
|
|
in vec2 pixcoord;
|
|
in vec4 offset[3];
|
|
in vec4 dummy2;
|
|
void main()
|
|
{
|
|
gl_FragColor = SMAABlendingWeightCalculationPS(texcoord, pixcoord, offset, edge_tex, area_tex, search_tex, ivec4(0));
|
|
|
|
} |