double-hit-balls/assets/smaa/blend_fragment.txt

422 lines
15 KiB
Plaintext
Executable File

#version 410 compatibility
#define SMAA_PIXEL_SIZE vec2(1.0 / 512.0, 1.0 / 512.0)
#define SMAA_THRESHOLD 0.05
#define SMAA_MAX_SEARCH_STEPS 32
#define SMAA_MAX_SEARCH_STEPS_DIAG 16
#define SMAA_CORNER_ROUNDING 25
#ifndef SMAA_DEPTH_THRESHOLD
#define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD)
#endif
#ifndef SMAA_REPROJECTION
#define SMAA_REPROJECTION 0
#endif
#define SMAA_REPROJECTION_WEIGHT_SCALE 30.0
#ifndef SMAA_AREATEX_MAX_DISTANCE
#define SMAA_AREATEX_MAX_DISTANCE 16
#endif
#ifndef SMAA_AREATEX_MAX_DISTANCE_DIAG
#define SMAA_AREATEX_MAX_DISTANCE_DIAG 20
#endif
#define SMAA_AREATEX_PIXEL_SIZE (1.0 / vec2(160.0, 560.0))
#define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0)
/* --- Define section is over ---- */
//-----------------------------------------------------------------------------
// Diagonal Search Functions
/**
* These functions allows to perform diagonal pattern searches.
*/
float SMAASearchDiag1(sampler2D edgesTex, vec2 texcoord, vec2 dir, float c) {
texcoord += dir * SMAA_PIXEL_SIZE;
vec2 e = vec2(0.0, 0.0);
float i;
for (i = 0.0; i < float(SMAA_MAX_SEARCH_STEPS_DIAG); i++) {
e.rg = textureLod(edgesTex, texcoord, 0.0).rg;
//SMAA_FLATTEN
if (dot(e, vec2(1.0, 1.0)) < 1.9) break;
texcoord += dir * SMAA_PIXEL_SIZE;
}
return i + float(e.g > 0.9) * c;
}
float SMAASearchDiag2(sampler2D edgesTex, vec2 texcoord, vec2 dir, float c) {
texcoord += dir * SMAA_PIXEL_SIZE;
vec2 e = vec2(0.0, 0.0);
float i;
for (i = 0.0; i < float(SMAA_MAX_SEARCH_STEPS_DIAG); i++) {
e.g = textureLod(edgesTex, texcoord, 0.0).g;
e.r = textureLodOffset(edgesTex, texcoord, 0.0, ivec2(1, 0)).r;
//SMAA_FLATTEN
if (dot(e, vec2(1.0, 1.0)) < 1.9) break;
texcoord += dir * SMAA_PIXEL_SIZE;
}
return i + float(e.g > 0.9) * c;
}
/**
* Similar to SMAAArea, this calculates the area corresponding to a certain
* diagonal distance and crossing edges 'e'.
*/
vec2 SMAAAreaDiag(sampler2D areaTex, vec2 dist, vec2 e, float offset) {
vec2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE_DIAG) * e + dist;
// We do a scale and bias for mapping to texel space:
texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + (0.5 * SMAA_AREATEX_PIXEL_SIZE);
// Diagonal areas are on the second half of the texture:
texcoord.x += 0.5;
// Move to proper place, according to the subpixel offset:
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
return textureLod(areaTex, texcoord, 0.0).rg;
}
/**
* This searches for diagonal patterns and returns the corresponding weights.
*/
vec2 SMAACalculateDiagWeights(sampler2D edgesTex, sampler2D areaTex, vec2 texcoord, vec2 e, ivec4 subsampleIndices) {
vec2 weights = vec2(0.0, 0.0);
vec2 d;
d.x = e.r > 0.0? SMAASearchDiag1(edgesTex, texcoord, vec2(-1.0, 1.0), 1.0) : 0.0;
d.y = SMAASearchDiag1(edgesTex, texcoord, vec2(1.0, -1.0), 0.0);
//SMAA_BRANCH
if (d.r + d.g > 2.0) { // d.r + d.g + 1 > 3
vec4 coords = fma(vec4(-d.r, d.r, d.g, -d.g), SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
vec4 c;
c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g;
c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, 0)).r;
c.z = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).g;
c.w = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, -1)).r;
vec2 e = 2.0 * c.xz + c.yw;
float t = float(SMAA_MAX_SEARCH_STEPS_DIAG) - 1.0;
e *= step(d.rg, vec2(t, t));
weights += SMAAAreaDiag(areaTex, d, e, float(subsampleIndices.z));
}
d.x = SMAASearchDiag2(edgesTex, texcoord, vec2(-1.0, -1.0), 0.0);
float right = textureLodOffset(edgesTex, texcoord, 0.0, ivec2(1, 0)).r;
d.y = right > 0.0? SMAASearchDiag2(edgesTex, texcoord, vec2(1.0, 1.0), 1.0) : 0.0;
//SMAA_BRANCH
if (d.r + d.g > 2.0) { // d.r + d.g + 1 > 3
vec4 coords = fma(vec4(-d.r, -d.r, d.g, d.g), SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
vec4 c;
c.x = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-1, 0)).g;
c.y = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 0, -1)).r;
c.zw = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1, 0)).gr;
vec2 e = 2.0 * c.xz + c.yw;
float t = float(SMAA_MAX_SEARCH_STEPS_DIAG) - 1.0;
e *= step(d.rg, vec2(t, t));
weights += SMAAAreaDiag(areaTex, d, e, float(subsampleIndices.w)).gr;
}
return weights;
}
//-----------------------------------------------------------------------------
// Horizontal/Vertical Search Functions
/**
* This allows to determine how much length should we add in the last step
* of the searches. It takes the bilinearly interpolated edge (see
* @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and
* crossing edges are active.
*/
float SMAASearchLength(sampler2D searchTex, vec2 e, float bias, float scale) {
// Not required if searchTex accesses are set to point:
// vec2 SEARCH_TEX_PIXEL_SIZE = 1.0 / vec2(66.0, 33.0);
// e = vec2(bias, 0.0) + 0.5 * SEARCH_TEX_PIXEL_SIZE +
// e * vec2(scale, 1.0) * vec2(64.0, 32.0) * SEARCH_TEX_PIXEL_SIZE;
e.r = bias + e.r * scale;
e.g = -e.g;
return 255.0 * textureLod(searchTex, e, 0.0).r;
}
/**
* Horizontal/vertical search functions for the 2nd pass.
*/
float SMAASearchXLeft(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
/**
* @PSEUDO_GATHER4
* This texcoord has been offset by (-0.25, -0.125) in the vertex shader to
* sample between edge, thus fetching four edges in a row.
* Sampling with different offsets in each direction allows to disambiguate
* which edges are active from the four fetched ones.
*/
vec2 e = vec2(0.0, 1.0);
while (texcoord.x > end &&
e.g > 0.8281 && // Is there some edge not activated?
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
e = textureLod(edgesTex, texcoord, 0.0).rg;
texcoord -= vec2(2.0, 0.0) * SMAA_PIXEL_SIZE;
}
// We correct the previous (-0.25, -0.125) offset we applied:
texcoord.x += 0.25 * SMAA_PIXEL_SIZE.x;
// The searches are bias by 1, so adjust the coords accordingly:
texcoord.x += SMAA_PIXEL_SIZE.x;
// Disambiguate the length added by the last step:
texcoord.x += 2.0 * SMAA_PIXEL_SIZE.x; // Undo last step
texcoord.x -= SMAA_PIXEL_SIZE.x * SMAASearchLength(searchTex, e, 0.0, 0.5);
return texcoord.x;
}
float SMAASearchXRight(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
vec2 e = vec2(0.0, 1.0);
while (texcoord.x < end &&
e.g > 0.8281 && // Is there some edge not activated?
e.r == 0.0) { // Or is there a crossing edge that breaks the line?
e = textureLod(edgesTex, texcoord, 0.0).rg;
texcoord += vec2(2.0, 0.0) * SMAA_PIXEL_SIZE;
}
texcoord.x -= 0.25 * SMAA_PIXEL_SIZE.x;
texcoord.x -= SMAA_PIXEL_SIZE.x;
texcoord.x -= 2.0 * SMAA_PIXEL_SIZE.x;
texcoord.x += SMAA_PIXEL_SIZE.x * SMAASearchLength(searchTex, e, 0.5, 0.5);
return texcoord.x;
}
float SMAASearchYUp(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
vec2 e = vec2(1.0, 0.0);
while (texcoord.y > end &&
e.r > 0.8281 && // Is there some edge not activated?
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
e = textureLod(edgesTex, texcoord, 0.0).rg;
texcoord -= vec2(0.0, 2.0) * SMAA_PIXEL_SIZE;
}
texcoord.y += 0.25 * SMAA_PIXEL_SIZE.y;
texcoord.y += SMAA_PIXEL_SIZE.y;
texcoord.y += 2.0 * SMAA_PIXEL_SIZE.y;
texcoord.y -= SMAA_PIXEL_SIZE.y * SMAASearchLength(searchTex, e.gr, 0.0, 0.5);
return texcoord.y;
}
float SMAASearchYDown(sampler2D edgesTex, sampler2D searchTex, vec2 texcoord, float end) {
vec2 e = vec2(1.0, 0.0);
while (texcoord.y < end &&
e.r > 0.8281 && // Is there some edge not activated?
e.g == 0.0) { // Or is there a crossing edge that breaks the line?
e = textureLod(edgesTex, texcoord, 0.0).rg;
texcoord += vec2(0.0, 2.0) * SMAA_PIXEL_SIZE;
}
texcoord.y -= 0.25 * SMAA_PIXEL_SIZE.y;
texcoord.y -= SMAA_PIXEL_SIZE.y;
texcoord.y -= 2.0 * SMAA_PIXEL_SIZE.y;
texcoord.y += SMAA_PIXEL_SIZE.y * SMAASearchLength(searchTex, e.gr, 0.5, 0.5);
return texcoord.y;
}
/**
* Ok, we have the distance and both crossing edges. So, what are the areas
* at each side of current edge?
*/
vec2 SMAAArea(sampler2D areaTex, vec2 dist, float e1, float e2, float offset) {
// Rounding prevents precision errors of bilinear filtering:
vec2 texcoord = float(SMAA_AREATEX_MAX_DISTANCE) * round(4.0 * vec2(e1, e2)) + dist;
// We do a scale and bias for mapping to texel space:
texcoord = SMAA_AREATEX_PIXEL_SIZE * texcoord + (0.5 * SMAA_AREATEX_PIXEL_SIZE);
// Move to proper place, according to the subpixel offset:
texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset;
return textureLod(areaTex, texcoord, 0.0).rg;
}
//-----------------------------------------------------------------------------
// Corner Detection Functions
void SMAADetectHorizontalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec2 texcoord, vec2 d) {
#if SMAA_CORNER_ROUNDING < 100 || SMAA_FORCE_CORNER_DETECTION == 1
vec4 coords = fma(vec4(d.x, 0.0, d.y, 0.0),
SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
vec2 e;
e.r = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(0.0, 1.0)).r;
bool left = abs(d.x) < abs(d.y);
e.g = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(0.0, -2.0)).r;
if (left) weights *= clamp(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e, 0.0, 1.0);
e.r = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2(1.0, 1.0)).r;
e.g = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2(1.0, -2.0)).r;
if (!left) weights *= clamp(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e, 0.0, 1.0);
#endif
}
void SMAADetectVerticalCornerPattern(sampler2D edgesTex, inout vec2 weights, vec2 texcoord, vec2 d) {
#if SMAA_CORNER_ROUNDING < 100 || SMAA_FORCE_CORNER_DETECTION == 1
vec4 coords = fma(vec4(0.0, d.x, 0.0, d.y),
SMAA_PIXEL_SIZE.xyxy, texcoord.xyxy);
vec2 e;
e.r = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2( 1.0, 0.0)).g;
bool left = abs(d.x) < abs(d.y);
e.g = textureLodOffset(edgesTex, coords.xy, 0.0, ivec2(-2.0, 0.0)).g;
if (left) weights *= clamp(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e, 0.0, 1.0);
e.r = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2( 1.0, 1.0)).g;
e.g = textureLodOffset(edgesTex, coords.zw, 0.0, ivec2(-2.0, 1.0)).g;
if (!left) weights *= clamp(float(SMAA_CORNER_ROUNDING) / 100.0 + 1.0 - e, 0.0, 1.0);
#endif
}
//-----------------------------------------------------------------------------
// Blending Weight Calculation Pixel Shader (Second Pass)
vec4 SMAABlendingWeightCalculationPS(vec2 texcoord,
vec2 pixcoord,
vec4 offset[3],
sampler2D edgesTex,
sampler2D areaTex,
sampler2D searchTex,
ivec4 subsampleIndices) { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES.
vec4 weights = vec4(0.0, 0.0, 0.0, 0.0);
vec2 e = texture(edgesTex, texcoord).rg;
//SMAA_BRANCH
if (e.g > 0.0) { // Edge at north
#if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
// Diagonals have both north and west edges, so searching for them in
// one of the boundaries is enough.
weights.rg = SMAACalculateDiagWeights(edgesTex, areaTex, texcoord, e, subsampleIndices);
// We give priority to diagonals, so if we find a diagonal we skip
// horizontal/vertical processing.
//SMAA_BRANCH
if (dot(weights.rg, vec2(1.0, 1.0)) == 0.0) {
#endif
vec2 d;
// Find the distance to the left:
vec2 coords;
coords.x = SMAASearchXLeft(edgesTex, searchTex, offset[0].xy, offset[2].x);
coords.y = offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_PIXEL_SIZE.y (@CROSSING_OFFSET)
d.x = coords.x;
// Now fetch the left crossing edges, two at a time using bilinear
// filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to
// discern what value each edge has:
float e1 = textureLod(edgesTex, coords, 0.0).r;
// Find the distance to the right:
coords.x = SMAASearchXRight(edgesTex, searchTex, offset[0].zw, offset[2].y);
d.y = coords.x;
// We want the distances to be in pixel units (doing this here allow to
// better interleave arithmetic and memory accesses):
d = d / SMAA_PIXEL_SIZE.x - pixcoord.x;
// SMAAArea below needs a sqrt, as the areas texture is compressed
// quadratically:
vec2 sqrt_d = sqrt(abs(d));
// Fetch the right crossing edges:
float e2 = textureLodOffset(edgesTex, coords, 0.0, ivec2(1, 0)).r;
// Ok, we know how this pattern looks like, now it is time for getting
// the actual area:
weights.rg = SMAAArea(areaTex, sqrt_d, e1, e2, float(subsampleIndices.y));
// Fix corners:
SMAADetectHorizontalCornerPattern(edgesTex, weights.rg, texcoord, d);
#if SMAA_MAX_SEARCH_STEPS_DIAG > 0 || SMAA_FORCE_DIAGONAL_DETECTION == 1
} else
e.r = 0.0; // Skip vertical processing.
#endif
}
//SMAA_BRANCH
if (e.r > 0.0) { // Edge at west
vec2 d;
// Find the distance to the top:
vec2 coords;
coords.y = SMAASearchYUp(edgesTex, searchTex, offset[1].xy, offset[2].z);
coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_PIXEL_SIZE.x;
d.x = coords.y;
// Fetch the top crossing edges:
float e1 = textureLod(edgesTex, coords, 0.0).g;
// Find the distance to the bottom:
coords.y = SMAASearchYDown(edgesTex, searchTex, offset[1].zw, offset[2].w);
d.y = coords.y;
// We want the distances to be in pixel units:
d = d / SMAA_PIXEL_SIZE.y - pixcoord.y;
// SMAAArea below needs a sqrt, as the areas texture is compressed
// quadratically:
vec2 sqrt_d = sqrt(abs(d));
// Fetch the bottom crossing edges:
float e2 = textureLodOffset(edgesTex, coords, 0.0, ivec2(0, 1)).g;
// Get the area for this direction:
weights.ba = SMAAArea(areaTex, sqrt_d, e1, e2, float(subsampleIndices.x));
// Fix corners:
SMAADetectVerticalCornerPattern(edgesTex, weights.ba, texcoord, d);
//return vec4(weights.ba, 0.0, 1.0);
}
return weights;
}
/* ------------- Header is over -------------- */
uniform sampler2D edge_tex;
uniform sampler2D area_tex;
uniform sampler2D search_tex;
in vec2 texcoord;
in vec2 pixcoord;
in vec4 offset[3];
in vec4 dummy2;
void main()
{
gl_FragColor = SMAABlendingWeightCalculationPS(texcoord, pixcoord, offset, edge_tex, area_tex, search_tex, ivec4(0));
}