OpenGTA/math/matrix.hpp
Anonymous Maarten 78c27f03c8 2006-12-10
2015-12-03 01:37:02 +01:00

152 lines
3.2 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef GOMEZ_Matrix_H
#define GOMEZ_Matrix_H
#include "vector.hpp"
namespace GomezMath {
/**
* Taken from:
* http://www.gamasutra.com/features/19990702/data_structures_01.htm
* http://www.gamasutra.com/features/19991018/Gomez_1.htm
*
* Both by Miguel Gomez
*/
// A 3x3 matrix
//
class Matrix
{
public:
Vector C[3]; //column vectors
public:
Matrix ()
{
//identity matrix
C[0].x = 1;
C[1].y = 1;
C[2].z = 1;
}
Matrix (const Vector & c0, const Vector & c1, const Vector & c2)
{
C[0] = c0;
C[1] = c1;
C[2] = c2;
}
//index a column, allow assignment
//NOTE: using this index operator along with the vector index
//gives you M[column][row], not the standard M[row][column]
Vector & operator [](long i)
{
return C[i];
}
//compare
const bool operator == (const Matrix & m) const
{
return C[0] == m.C[0] && C[1] == m.C[1] && C[2] == m.C[2];
}
const bool operator != (const Matrix & m) const
{
return !(m == *this);
}
//assign
const Matrix & operator = (const Matrix & m)
{
C[0] = m.C[0];
C[1] = m.C[1];
C[2] = m.C[2];
return *this;
}
//increment
const Matrix & operator += (const Matrix & m)
{
C[0] += m.C[0];
C[1] += m.C[1];
C[2] += m.C[2];
return *this;
}
//decrement
const Matrix & operator -= (const Matrix & m)
{
C[0] -= m.C[0];
C[1] -= m.C[1];
C[2] -= m.C[2];
return *this;
}
//self-multiply by a scalar
const Matrix & operator *= (const Scalar & s)
{
C[0] *= s;
C[1] *= s;
C[2] *= s;
return *this;
}
//self-multiply by a matrix
const Matrix & operator *= (const Matrix & m)
{
//NOTE: dont change the columns
//in the middle of the operation
Matrix temp = (*this);
C[0] = temp * m.C[0];
C[1] = temp * m.C[1];
C[2] = temp * m.C[2];
return *this;
}
//add
const Matrix operator + (const Matrix & m) const
{
return Matrix (C[0] + m.C[0], C[1] + m.C[1], C[2] + m.C[2]);
}
//subtract
const Matrix operator - (const Matrix & m) const
{
return Matrix (C[0] - m.C[0], C[1] - m.C[1], C[2] - m.C[2]);
}
//post-multiply by a scalar
const Matrix operator * (const Scalar & s) const
{
return Matrix (C[0] * s, C[1] * s, C[2] * s);
}
//pre-multiply by a scalar
friend inline const Matrix operator * (const Scalar & s, const Matrix & m)
{
return m * s;
}
//post-multiply by a vector
const Vector operator * (const Vector & v) const
{
return (C[0] * v.x + C[1] * v.y + C[2] * v.z);
}
//pre-multiply by a vector
inline friend const Vector operator * (const Vector & v, const Matrix & m)
{
return Vector (m.C[0].dot (v), m.C[1].dot (v), m.C[2].dot (v));
}
//post-multiply by a matrix
const Matrix operator * (const Matrix & m) const
{
return Matrix ((*this) * m.C[0], (*this) * m.C[1], (*this) * m.C[2]);
}
//transpose
Matrix transpose () const
{
//turn columns on their side
return Matrix (Vector (C[0].x, C[1].x, C[2].x), //column 0
Vector (C[0].y, C[1].y, C[2].y), //column 1
Vector (C[0].z, C[1].z, C[2].z) //column 2
);
}
//scalar determinant
const Scalar determinant () const
{
//Lang, "Linear Algebra", p. 143
return C[0].dot (C[1].cross (C[2]));
}
//matrix inverse
const Matrix inverse () const;
};
}
#endif