double-hit-balls/game/main_code.cpp
2018-07-13 22:59:13 +05:00

698 lines
21 KiB
C++
Executable File

#include "main_code.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "include/Engine.h"
#include "main_code.h"
TMyApplication* Application;
std::vector<SE::Vector3f> posArr;
std::vector<SE::Vector3f> normArr;
std::vector<SE::Vector3f> colorArr;
std::vector<SE::Vector2f> texCoordArr;
GLuint posBuffer;
GLuint normBuffer;
GLuint colorBuffer;
GLuint texCoordBuffer;
size_t posArrIndex = 0;
size_t normArrIndex = 0;
size_t colorArrIndex = 0;
size_t texCoordArrIndex = 0;
Matrix3f quatToMatrix(Vector4f q) {
Matrix3f result;
double sqw = q(3)*q(3);
double sqx = q(0)*q(0);
double sqy = q(1)*q(1);
double sqz = q(2)*q(2);
// invs (inverse square length) is only required if quaternion is not already normalised
double invs = 1 / (sqx + sqy + sqz + sqw);
result(0,0) = (sqx - sqy - sqz + sqw)*invs; // since sqw + sqx + sqy + sqz =1/invs*invs
result(1,1) = (-sqx + sqy - sqz + sqw)*invs;
result(2,2) = (-sqx - sqy + sqz + sqw)*invs;
double tmp1 = q(0)*q(1);
double tmp2 = q(2)*q(3);
result(1, 0) = 2.0 * (tmp1 + tmp2)*invs;
result(0, 1) = 2.0 * (tmp1 - tmp2)*invs;
tmp1 = q(0)*q(2);
tmp2 = q(1)*q(3);
result(2,0) = 2.0 * (tmp1 - tmp2)*invs;
result(0,2) = 2.0 * (tmp1 + tmp2)*invs;
tmp1 = q(1)*q(2);
tmp2 = q(0)*q(3);
result(2, 1) = 2.0 * (tmp1 + tmp2)*invs;
result(1, 2) = 2.0 * (tmp1 - tmp2)*invs;
return result;
}
void TMyApplication::InnerInit()
{
Application = this;
#ifdef TARGET_WIN32
#ifdef NDEBUG
ST::PathToResources = "resources/";
//ST::PathToResources = "../../../assets/";
#else
ST::PathToResources = "../../../assets/";
#endif
#endif
#ifdef TARGET_IOS
ST::PathToResources = "assets/";
#endif
if (Console != NULL)
{
*Console<<"APP INIT\n";
}
srand (static_cast<size_t>(time(NULL)));
ResourceManager->ShaderManager.AddShader("DefaultShader", "shader1vertex.txt", "shader1fragment.txt");
ResourceManager->ShaderManager.AddShader("FrameShader", "frameshader_vertex.txt", "frameshader_fragment.txt");
ResourceManager->ShaderManager.AddShader("ColorShader", "color_vertex.txt", "color_fragment.txt");
ResourceManager->ShaderManager.AddShader("SSAA_4X", "SSAA_4X.vertex", "SSAA_4X.frag");
ResourceManager->ShaderManager.AddShader("ParallaxShader", "parallax_vertex.txt", "parallax_fragment.txt");
//ResourceManager->ShaderManager.AddShader("SimpleShadingNoTex", "simple_shading_no_tex.vertex", "simple_shading_no_tex.fragment");
ResourceManager->ShaderManager.AddShader("SimpleShading", "simple_shading.vertex", "simple_shading.fragment");
Renderer->PushShader("DefaultShader");
ResourceManager->TexList.AddTexture("console_bkg.bmp");
ResourceManager->TexList.AddTexture("background.jpg");
ResourceManager->TexList.AddTexture("pimgpsh.jpg");
ResourceManager->TexList.AddTexture("HeightMap.png");
ResourceManager->TexList.AddTexture("NormalMap.png");
ResourceManager->TexList.AddTexture("linesAll.png");
ResourceManager->TexList.AddTexture("clean-fabric-texture-4-780x585.jpg");
ResourceManager->TexList.AddTexture("free-detailed-tiled-rope-texture-3d-model-low-poly-blend.png");
//
/*
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].reserve(90000000);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].reserve(90000000);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].reserve(90000000);
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].reserve(90000000);
*/
posArr.resize(20000000);
normArr.resize(20000000);
texCoordArr.resize(20000000);
colorArr.resize(20000000);
ResourceManager->FrameManager.AddFrameRenderBuffer("LevelBuffer", 512, 512);
Vector2f const bottomLeft(-500, -500);
float const W = 1000;
float const H = 1000;
Vector2f const backgroundBottomLeft(-3000, -3000);
float const backgroundW = 6000;
float const backgroundH = 6000;
{
//resolution of background image
//float const imageW = 512;
//float const imageH = 512;
float const imageW = 2048;
float const imageH = 2048;
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[1]));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[1] + backgroundH));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[1] + backgroundH));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[0] + backgroundH));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[0]));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[0]));
float const tw = backgroundW / imageW;
float const th = backgroundH / imageH;
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, th));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, 0));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, 0));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, 0));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, th));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, th));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
}
auto findPlaneBasis = [] (const Vector3f &normal) {
std::vector<Vector3f> result;
Vector3f e0, e1;
if(normal.z() != 0)
{
e0 = Vector3f(1, 0, -normal.x() / normal.z()).normalized();
e1 = Vector3f(0, 1, -normal.y() / normal.z());
}
else if(normal.y() != 0)
{
e0 = Vector3f(1, -normal.x() / normal.y(), 0).normalized();
e1 = Vector3f(0, -normal.z() / normal.y(), 1);
}
else
{
e0 = Vector3f(-normal.y() / normal.x(), 1, 0).normalized();
e1 = Vector3f(-normal.z() / normal.x(), 0, 1);
}
e1 = (e1 - (e1.dot(e0) / e0.dot(e0)) * e0).normalized();
result.push_back(e0);
result.push_back(e1);
return result;
};
{
//float const R = 3;
float const R = 0;
//float const r = 4;
//float const r = 16;
float const r = 19;
//size_t const threadsCount = 3;
size_t const threadsCount = 1;
size_t const edgesCount = 6;
//float const angle = pi / 6;
float const angle = 0;
Vector3f up(0, 1, 0); up.normalize();
//size_t const step = 5;
float const step = 20;
const Vector3f vshift = Vector3f(0.f, 0.002f, 0.f);
int vShiftVal = 0;
auto g = [&] (Vector3f start, Vector3f end, const Vector3f &color, int x) {
Vector3f direction = (end - start).normalized();
end = end - (r + R) * direction;
float iterationsCount = (end - start).norm() / step;
auto e = findPlaneBasis(up);
std::vector<Vector3f> threadCenters;
std::vector<std::vector<Vector4f>> threads;
for(auto i = 0; i < threadsCount; i++) {
std::vector<Vector4f> edges;
Vector3f threadCenter = R * (e[0] * cosf(i * 2 * pi / threadsCount) + e[1] * sinf(i * 2 * pi / threadsCount));
threadCenters.push_back(threadCenter);
for(auto j = 0; j < edgesCount; j++) {
auto verticeCenter = threadCenter + r * (e[0] * cosf(j * 2 * pi / edgesCount) + e[1] * sinf(j * 2 * pi / edgesCount));
edges.push_back(Vector4f(verticeCenter.x(), verticeCenter.y(), verticeCenter.z(), 1));
}
threads.push_back(edges);
}
auto rotateMatrix1 = (
Translation3f((r + R) * direction) *
AngleAxis<float>(
-pi / 8,
direction.cross(up).normalized()
) *
Translation3f(-(r + R) * direction)
).matrix();
auto matrix = (
Translation3f((r + R) * up) *
AngleAxis<float>(
angle,
direction
) *
Translation3f(-(r + R) * up) *
Translation3f(static_cast<int>(step) * direction)
).matrix();
auto rotateMatrix2 = (
Translation3f(static_cast<int>(step) * direction * iterationsCount) *
Translation3f((r + R) * direction) *
AngleAxis<float>(
-pi / 8,
direction.cross(up).normalized()
) *
Translation3f(-(r + R) * direction) *
Translation3f(-static_cast<int>(step) * direction * iterationsCount)
).matrix();
for(int i = -2; i < static_cast<int>(iterationsCount) + 2; i++) {
std::vector<std::vector<Vector4f>> newThreads;
for(auto j = 0; j < threadsCount; j++) {
auto edges = threads[j];
std::vector<Vector4f> newEdges;
for(auto k = 0; k < edgesCount; k++) {
if(i < 0) {
newEdges.push_back(rotateMatrix1 * edges[k]);
} else if(i < iterationsCount) {
newEdges.push_back(matrix * edges[k]);
} else {
newEdges.push_back(rotateMatrix2 * edges[k]);
}
}
newThreads.push_back(newEdges);
auto threadCenter_ = Vector4f(threadCenters[j].x(), threadCenters[j].y(), threadCenters[j].z(), 1);
auto threadCenter = threadCenter_.head(3);
Vector3f newThreadCenter;
if (i < 0) {
newThreadCenter = (rotateMatrix1 * threadCenter_).head(3);
} else if (i < iterationsCount) {
newThreadCenter = (matrix * threadCenter_).head(3);
} else {
newThreadCenter = (rotateMatrix2 * threadCenter_).head(3);
}
threadCenters[j] = newThreadCenter;
for(auto k = 0; k < edgesCount; k++) {
auto vk = edges[k].head(3);
auto vk1 = edges[(k + 1) % edgesCount].head(3);
auto nvk = newEdges[k].head(3);
auto nvk1 = newEdges[(k + 1) % edgesCount].head(3);
posArr[posArrIndex] = start + vk + vshift*x;
posArrIndex++;
posArr[posArrIndex] = start + vk1 + vshift * x;
posArrIndex++;
//posArr[posArrIndex] = start + nvk;
//posArrIndex++;
//posArr[posArrIndex] = start + vk1;
//posArrIndex++;
posArr[posArrIndex] = start + nvk1 + vshift * x;
posArrIndex++;
posArr[posArrIndex] = start + nvk + vshift*x;
posArrIndex++;
normArr[normArrIndex] = vk - threadCenter;
normArrIndex++;
normArr[normArrIndex] = vk1 - threadCenter;
normArrIndex++;
//normArr[normArrIndex] = nvk - newThreadCenter;
//normArrIndex++;
//normArr[normArrIndex] = vk1 - threadCenter;
//normArrIndex++;
normArr[normArrIndex] = nvk1 - newThreadCenter;
normArrIndex++;
normArr[normArrIndex] = nvk - newThreadCenter;
normArrIndex++;
texCoordArr[texCoordArrIndex] = Vector2f((float)(k) / (edgesCount), (i + 2) / 4.f);
texCoordArrIndex++;
texCoordArr[texCoordArrIndex] = Vector2f((float)(k+10) / (edgesCount), (i + 2) / 4.f);
texCoordArrIndex++;
//texCoordArr[texCoordArrIndex] = Vector2f(0.1, 0.2);
//texCoordArrIndex++;
//texCoordArr[texCoordArrIndex] = Vector2f(0.2, 0.1);
//texCoordArrIndex++;
texCoordArr[texCoordArrIndex] = Vector2f((float)(k + 10) / (edgesCount), (i + 3) / 4.f);
texCoordArrIndex++;
texCoordArr[texCoordArrIndex] = Vector2f((float)k / (edgesCount), (i + 3) / 4.f);
texCoordArrIndex++;
colorArr[colorArrIndex] = color;
colorArrIndex++;
colorArr[colorArrIndex] = color;
colorArrIndex++;
colorArr[colorArrIndex] = color;
colorArrIndex++;
//colorArr[colorArrIndex] = color;
//colorArrIndex++;
colorArr[colorArrIndex] = color;
colorArrIndex++;
//colorArr[colorArrIndex] = color;
//colorArrIndex++;
/*
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk1);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk1);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk1);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((vk - threadCenter));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((vk1 - threadCenter));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((nvk - newThreadCenter));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((vk1 - threadCenter));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((nvk1 - newThreadCenter));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].push_back((nvk - newThreadCenter));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.1, 0.1));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.2, 0.1));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.1, 0.2));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.2, 0.1));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.2, 0.2));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.1, 0.2));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color);
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].push_back(color);
*/
}
}
threads = newThreads;
}
};
{
namespace pt = boost::property_tree;
pt::ptree root;
//pt::read_json(ST::PathToResources + "lines.json", root);
//pt::read_json(ST::PathToResources + "lines100500.json", root);
pt::read_json(ST::PathToResources + "lines100500.json", root);
int x = 0;
for(auto line: root.get_child("lines")) {
std::vector<int> start;
std::vector<int> end;
std::vector<float> color;
for(auto value: line.second.get_child("start")) {
start.push_back(value.second.get_value<int>());
}
for (auto value : line.second.get_child("end")) {
end.push_back(value.second.get_value<int>());
}
for (auto value : line.second.get_child("color")) {
color.push_back(value.second.get_value<float>());
}
g(Vector3f(start[0], 0, start[1]), Vector3f(end[0], 0, end[1]), Vector3f(color[0], color[1], color[2]), x);
x++;
}
}
}
background.first.ShaderName ="DefaultShader";
fabricRender.first.ShaderName = "SimpleShading";
//fabricRender.first.ShaderName = "SimpleShadingNoTex";
/*
* Line below should be in tes-engine/include/ShaderManager/ShaderManager.h
*/
std::string const CONST_STRING_HEIGHTMAP_UNIFORM = "HeightMap";
background.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "pimgpsh.jpg";
fabricRender.first.SamplerMap[CONST_STRING_NORMALMAP_UNIFORM] = "NormalMap.png";
fabricRender.first.SamplerMap[CONST_STRING_HEIGHTMAP_UNIFORM] = "HeightMap.png";
//fabricRender.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "clean-fabric-texture-4-780x585.jpg";
fabricRender.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "free-detailed-tiled-rope-texture-3d-model-low-poly-blend.png";
fabricRender.first.Vec4Map[CONST_STRING_LIGHT_DIRECTION_UNIFORM] = Vector4f(0, -1, 0, 0);
background.second.RefreshBuffer();
//fabricRender.second.RefreshBuffer();
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].clear();
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_NORMAL_ATTRIB].clear();
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_COLOR_ATTRIB].clear();
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].clear();
glGenBuffers(1, &posBuffer);
glBindBuffer(GL_ARRAY_BUFFER, posBuffer);
glBufferData(GL_ARRAY_BUFFER, posArr.size() * 12, &posArr[0], GL_STATIC_DRAW);
glGenBuffers(1, &normBuffer);
glBindBuffer(GL_ARRAY_BUFFER, normBuffer);
glBufferData(GL_ARRAY_BUFFER, normArr.size() * 12, &normArr[0], GL_STATIC_DRAW);
glGenBuffers(1, &colorBuffer);
glBindBuffer(GL_ARRAY_BUFFER, colorBuffer);
glBufferData(GL_ARRAY_BUFFER, colorArr.size() * 12, &colorArr[0], GL_STATIC_DRAW);
glGenBuffers(1, &texCoordBuffer);
glBindBuffer(GL_ARRAY_BUFFER, texCoordBuffer);
glBufferData(GL_ARRAY_BUFFER, texCoordArr.size() * 8, &texCoordArr[0], GL_STATIC_DRAW);
glDisable(GL_DEPTH_TEST);
Inited = true;
}
void TMyApplication::InnerDeinit()
{
Inited = false;
Loaded = false;
if (Console != NULL)
{
*Console<<"APP DEINIT\n";
}
}
void TMyApplication::InnerOnTapDown(Vector2f p)
{
posArr.clear();
normArr.clear();
colorArr.clear();
//fabricRender.second.Data.Vec2CoordArr.clear();
//fabricRender.second.Data.Vec3CoordArr.clear();
}
void TMyApplication::InnerOnTapUp(Vector2f p)
{
}
void TMyApplication::InnerOnTapUpAfterMove(Vector2f p)
{
}
void TMyApplication::InnerOnMove(Vector2f p, Vector2f shift)
{
phi += shift(1)*0.02f;
if (phi < pi/12)
{
phi = pi / 12;
}
if (phi > pi / 2)
{
phi = pi / 2;
}
alpha -= shift(0)*0.02f;
}
void TMyApplication::OnFling(Vector2f v)
{
}
void TMyApplication::OnMouseWheel(short int delta)
{
distance += delta;
/*if (distance > 2500)
{
distance = 2500;
}*/
if (distance < 100)
{
distance = 100;
}
}
void TMyApplication::InnerDraw()
{
Renderer->SetPerspectiveProjection(pi / 6, 100.f, 40000.f);
Renderer->SetFullScreenViewport();
Renderer->PushMatrix();
Renderer->TranslateMatrix(Vector3f(0, 0, -distance));
Vector4f quat1 = Vector4f(sin(phi / 2), 0, 0, cos(phi / 2));
Vector4f quat2 = Vector4f(0, sin(alpha / 2), 0, cos(alpha / 2));
Renderer->RotateMatrix(quat1);
Renderer->RotateMatrix(quat2);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
CheckGlError("");
auto mat1 = quatToMatrix(quat1);
auto mat2 = quatToMatrix(quat2);
Vector3f lightPos = {0.f, 1.f, 1.f};
Vector3f eye = mat2 * mat1 * Vector3f(0.0f, 0.f, -distance);
{
TRenderParamsSetter params(background.first);
RenderUniform3fv("eye", eye.data());
RenderUniform3fv("lightPos", lightPos.data());
Matrix3f normMatrix = Renderer->GetModelviewMatrix().inverse().transpose().block<3, 3>(0, 0);
RenderUniformMatrix3fv("NormalMatrix", false, normMatrix.data());
RenderUniformMatrix4fv("ModelViewMatrix", false, Renderer->GetModelviewMatrix().data());
RenderUniformMatrix3fv("ModelViewMatrix3x3", false, Renderer->GetModelviewMatrix().block<3, 3>(0, 0).data());
Renderer->DrawTriangleList(background.second);
}
//glEnable(GL_CULL_FACE);
{
TRenderParamsSetter params(fabricRender.first);
RenderUniform3fv("eye", eye.data());
RenderUniform3fv("lightPos", lightPos.data());
Matrix3f normMatrix = Renderer->GetModelviewMatrix().inverse().transpose().block<3,3>(0,0);
RenderUniformMatrix3fv("NormalMatrix", false, normMatrix.data());
RenderUniformMatrix4fv("ModelViewMatrix", false, Renderer->GetModelviewMatrix().data());
RenderUniformMatrix3fv("ModelViewMatrix3x3", false, Renderer->GetModelviewMatrix().block<3,3>(0,0).data());
glBindBuffer(GL_ARRAY_BUFFER, posBuffer);
VertexAttribPointer3fv(CONST_STRING_POSITION_ATTRIB, 0, NULL);
glBindBuffer(GL_ARRAY_BUFFER, normBuffer);
VertexAttribPointer3fv(CONST_STRING_NORMAL_ATTRIB, 0, NULL);
glBindBuffer(GL_ARRAY_BUFFER, colorBuffer);
VertexAttribPointer3fv(CONST_STRING_COLOR_ATTRIB, 0, NULL);
glBindBuffer(GL_ARRAY_BUFFER, texCoordBuffer);
VertexAttribPointer2fv(CONST_STRING_TEXCOORD_ATTRIB, 0, NULL);
glDrawArrays(GL_QUADS, 0, posArrIndex);
//Renderer->DrawTriangleList(fabricRender.second);
}
Renderer->PopMatrix();
CheckGlError("");
}
void TMyApplication::InnerUpdate(size_t dt)
{
}
bool TMyApplication::IsLoaded()
{
return Loaded;
}
bool TMyApplication::IsInited()
{
return Inited;
}