double-hit-balls/game/main_code.cpp
2018-05-30 18:09:27 +05:00

408 lines
12 KiB
C++
Executable File

#include "main_code.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "include/Engine.h"
#include "main_code.h"
TMyApplication* Application;
Matrix3f quatToMatrix(Vector4f q) {
Matrix3f result;
double sqw = q(3)*q(3);
double sqx = q(0)*q(0);
double sqy = q(1)*q(1);
double sqz = q(2)*q(2);
// invs (inverse square length) is only required if quaternion is not already normalised
double invs = 1 / (sqx + sqy + sqz + sqw);
result(0,0) = (sqx - sqy - sqz + sqw)*invs; // since sqw + sqx + sqy + sqz =1/invs*invs
result(1,1) = (-sqx + sqy - sqz + sqw)*invs;
result(2,2) = (-sqx - sqy + sqz + sqw)*invs;
double tmp1 = q(0)*q(1);
double tmp2 = q(2)*q(3);
result(1, 0) = 2.0 * (tmp1 + tmp2)*invs;
result(0, 1) = 2.0 * (tmp1 - tmp2)*invs;
tmp1 = q(0)*q(2);
tmp2 = q(1)*q(3);
result(2,0) = 2.0 * (tmp1 - tmp2)*invs;
result(0,2) = 2.0 * (tmp1 + tmp2)*invs;
tmp1 = q(1)*q(2);
tmp2 = q(0)*q(3);
result(2, 1) = 2.0 * (tmp1 + tmp2)*invs;
result(1, 2) = 2.0 * (tmp1 - tmp2)*invs;
return result;
}
void TMyApplication::InnerInit()
{
Application = this;
#ifdef TARGET_WIN32
#ifdef NDEBUG
//ST::PathToResources = "resources/";
ST::PathToResources = "../../../assets/";
#else
ST::PathToResources = "../../../assets/";
#endif
#endif
#ifdef TARGET_IOS
ST::PathToResources = "assets/";
#endif
if (Console != NULL)
{
*Console<<"APP INIT\n";
}
srand (static_cast<size_t>(time(NULL)));
ResourceManager->ShaderManager.AddShader("DefaultShader", "shader1vertex.txt", "shader1fragment.txt");
ResourceManager->ShaderManager.AddShader("FrameShader", "frameshader_vertex.txt", "frameshader_fragment.txt");
ResourceManager->ShaderManager.AddShader("ColorShader", "color_vertex.txt", "color_fragment.txt");
ResourceManager->ShaderManager.AddShader("SSAA_4X", "SSAA_4X.vertex", "SSAA_4X.frag");
ResourceManager->ShaderManager.AddShader("ParallaxShader", "parallax_vertex.txt", "parallax_fragment.txt");
Renderer->PushShader("DefaultShader");
ResourceManager->TexList.AddTexture("console_bkg.bmp");
ResourceManager->TexList.AddTexture("background.jpg");
ResourceManager->TexList.AddTexture("HeightMap.png");
ResourceManager->TexList.AddTexture("NormalMap.png");
ResourceManager->TexList.AddTexture("linesAll.png");
ResourceManager->TexList.AddTexture("clean-fabric-texture-4-780x585.jpg");
ResourceManager->FrameManager.AddFrameRenderBuffer("LevelBuffer", 512, 512);
Vector2f const bottomLeft(-500, -500);
float const W = 1000;
float const H = 1000;
Vector2f const backgroundBottomLeft(-1000, -1000);
float const backgroundW = 2000;
float const backgroundH = 2000;
{
//resolution of background image
float const imageW = 512;
float const imageH = 512;
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[1]));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[1] + backgroundH));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[1] + backgroundH));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[0] + backgroundH));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0] + backgroundW, 0, backgroundBottomLeft[0]));
background.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].emplace_back(Vector3f(backgroundBottomLeft[0], 0, backgroundBottomLeft[0]));
float const tw = backgroundW / imageW;
float const th = backgroundH / imageH;
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, th));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, 0));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, 0));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, 0));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(tw, th));
background.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].emplace_back(Vector2f(0, th));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
background.second.Data.Vec4CoordArr[CONST_STRING_COLOR_ATTRIB].emplace_back(Vector4f(1, 1, 1, 1));
}
{
//resolution of linesAll.png
float const texW = 900;
float const texH = 900;
float const step = 12;
float const thick = 10;
float const R = 5;
float const r = 6;
size_t const threadsCount = 3;
size_t const verticesCount = 6;
float const angle = pi / 18;
size_t const iterationsCount = 50;
auto g = [this, R, r, threadsCount, verticesCount, angle, iterationsCount, texW, texH, thick, H, W] (const Vector3f &start, const Vector3f &end) {
Vector3f direction = end - start;
Vector3f translate = direction / iterationsCount;
direction.normalize();
auto e0 = Vector3f(1, 0, -direction.x() / direction.z());
auto e1 = Vector3f(0, 1, -direction.y() / direction.z());
e1 = e1 - (e1.dot(e0) / e0.dot(e0)) * e0;
e0.normalize();
e1.normalize();
std::vector<std::vector<Vector4f>> threads;
for(auto i = 0; i < threadsCount; i++) {
std::vector<Vector4f> vertices;
Vector3f threadCenter = R * (e0 * cosf(i * 2 * pi / threadsCount) + e1 * sinf(i * 2 * pi / threadsCount));
for(auto j = 0; j < verticesCount; j++) {
auto verticeCenter = threadCenter + r * (e0 * cosf(j * 2 * pi / verticesCount) + e1 * sinf(j * 2 * pi / verticesCount));
vertices.push_back(Vector4f(verticeCenter.x(), verticeCenter.y(), verticeCenter.z(), 1));
}
threads.push_back(vertices);
}
auto transform = Translation3f(translate) * AngleAxis<float>(angle, direction);
auto matrix = transform.matrix();
for(auto i = 0; i < iterationsCount; i++) {
std::vector<std::vector<Vector4f>> newThreads;
for(auto j = 0; j < threadsCount; j++) {
auto vertices = threads[j];
std::vector<Vector4f> newVertices;
for(auto k = 0; k < verticesCount; k++) {
newVertices.push_back(matrix * vertices[k]);
}
newThreads.push_back(newVertices);
for(auto k = 0; k < verticesCount; k++) {
auto vk = vertices[k];
auto vk1 = vertices[(k + 1) % verticesCount];
auto nvk = newVertices[k];
auto nvk1 = newVertices[(k + 1) % verticesCount];
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk.head(3));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk1.head(3));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk.head(3));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + vk1.head(3));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk1.head(3));
fabricRender.second.Data.Vec3CoordArr[CONST_STRING_POSITION_ATTRIB].push_back(start + nvk.head(3));
auto texThick = thick / texW;
auto m = (start[0] + end[0]) / 2 / texW;
auto y = H / texH;
auto texPiece = texH / iterationsCount;
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 0));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.01, 0));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 0.01));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.01, 0));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0.01, 0.01));
fabricRender.second.Data.Vec2CoordArr[CONST_STRING_TEXCOORD_ATTRIB].push_back(Vector2f(0, 0.01));
}
}
threads = newThreads;
}
};
Vector3f const stepDirection(18, 0, 0);
Vector3f p1(bottomLeft[0], 0, -bottomLeft[1]);
Vector3f p2 = p1 - Vector3f(0, 0, W);
while(p1[0] < bottomLeft[0] + W)
{
g(p1, p2);
p1 += stepDirection;
p2 += stepDirection;
}
}
background.first.ShaderName ="DefaultShader";
fabricRender.first.ShaderName = "ParallaxShader";
/*
* Line below should be in tes-engine/include/ShaderManager/ShaderManager.h
*/
std::string const CONST_STRING_HEIGHTMAP_UNIFORM = "HeightMap";
background.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "background.jpg";
fabricRender.first.SamplerMap[CONST_STRING_NORMALMAP_UNIFORM] = "NormalMap.png";
fabricRender.first.SamplerMap[CONST_STRING_HEIGHTMAP_UNIFORM] = "HeightMap.png";
fabricRender.first.SamplerMap[CONST_STRING_TEXTURE_UNIFORM] = "clean-fabric-texture-4-780x585.jpg";
background.second.RefreshBuffer();
fabricRender.second.RefreshBuffer();
glEnable(GL_DEPTH_TEST);
Inited = true;
}
void TMyApplication::InnerDeinit()
{
Inited = false;
Loaded = false;
if (Console != NULL)
{
*Console<<"APP DEINIT\n";
}
}
void TMyApplication::InnerOnTapDown(Vector2f p)
{
}
void TMyApplication::InnerOnTapUp(Vector2f p)
{
}
void TMyApplication::InnerOnTapUpAfterMove(Vector2f p)
{
}
void TMyApplication::InnerOnMove(Vector2f p, Vector2f shift)
{
phi += shift(1)*0.02f;
if (phi < pi/12)
{
phi = pi / 12;
}
if (phi > pi / 2)
{
phi = pi / 2;
}
alpha -= shift(0)*0.02f;
}
void TMyApplication::OnFling(Vector2f v)
{
}
void TMyApplication::OnMouseWheel(short int delta)
{
distance += delta;
if (distance > 2500)
{
distance = 2500;
}
if (distance < 100)
{
distance = 100;
}
}
void TMyApplication::InnerDraw()
{
Renderer->SetPerspectiveProjection(pi / 6, 10.f, 10000.f);
Renderer->SetFullScreenViewport();
Renderer->PushMatrix();
Renderer->TranslateMatrix(Vector3f(0, 0, -distance));
Vector4f quat1 = Vector4f(sin(phi / 2), 0, 0, cos(phi / 2));
Vector4f quat2 = Vector4f(0, sin(alpha / 2), 0, cos(alpha / 2));
Renderer->RotateMatrix(quat1);
Renderer->RotateMatrix(quat2);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
CheckGlError("");
auto mat1 = quatToMatrix(quat1);
auto mat2 = quatToMatrix(quat2);
Vector3f lightPos = {0.f, 1.f, 1.f};
Vector3f eye = mat2 * mat1 * Vector3f(0.0f, 0.f, -distance);
{
TRenderParamsSetter params(background.first);
RenderUniform3fv("eye", eye.data());
RenderUniform3fv("lightPos", lightPos.data());
Matrix3f normMatrix = Renderer->GetModelviewMatrix().inverse().transpose().block<3, 3>(0, 0);
RenderUniformMatrix3fv("NormalMatrix", false, normMatrix.data());
RenderUniformMatrix4fv("ModelViewMatrix", false, Renderer->GetModelviewMatrix().data());
RenderUniformMatrix3fv("ModelViewMatrix3x3", false, Renderer->GetModelviewMatrix().block<3, 3>(0, 0).data());
Renderer->DrawTriangleList(background.second);
}
//glEnable(GL_CULL_FACE);
{
TRenderParamsSetter params(fabricRender.first);
RenderUniform3fv("eye", eye.data());
RenderUniform3fv("lightPos", lightPos.data());
Matrix3f normMatrix = Renderer->GetModelviewMatrix().inverse().transpose().block<3,3>(0,0);
RenderUniformMatrix3fv("NormalMatrix", false, normMatrix.data());
RenderUniformMatrix4fv("ModelViewMatrix", false, Renderer->GetModelviewMatrix().data());
RenderUniformMatrix3fv("ModelViewMatrix3x3", false, Renderer->GetModelviewMatrix().block<3,3>(0,0).data());
Renderer->DrawTriangleList(fabricRender.second);
}
Renderer->PopMatrix();
CheckGlError("");
}
void TMyApplication::InnerUpdate(size_t dt)
{
}
bool TMyApplication::IsLoaded()
{
return Loaded;
}
bool TMyApplication::IsInited()
{
return Inited;
}