space-game001/PlanetData.cpp
Vladislav Khorev f197dfcf02 Clean up some
2025-12-29 20:40:13 +03:00

493 lines
19 KiB
C++

#include "PlanetData.h"
#include <iostream>
#include <numeric>
#include <cmath>
#include <algorithm>
namespace ZL {
const float PlanetData::PLANET_RADIUS = 20000.f;
const Vector3f PlanetData::PLANET_CENTER_OFFSET = Vector3f{ 0.f, 0.f, 0.0f };
// --- Êîíñòàíòû äèàïàçîíîâ (ïåðåíåñåíû èç PlanetObject.cpp) ---
VertexID generateEdgeID(const VertexID& id1, const VertexID& id2) {
return id1 < id2 ? id1 + "_" + id2 : id2 + "_" + id1;
}
// Âñïîìîãàòåëüíàÿ ôóíêöèÿ äëÿ ïðîåêöèè (ëîêàëüíàÿ)
static Vector3f projectPointOnPlane(const Vector3f& P, const Vector3f& A, const Vector3f& B, const Vector3f& C) {
Vector3f AB = B + A * (-1.0f);
Vector3f AC = C + A * (-1.0f);
Vector3f N = AB.cross(AC).normalized();
Vector3f AP = P + A * (-1.0f);
float distance = N.dot(AP);
return P + N * (-distance);
}
PlanetData::PlanetData()
: perlin(77777)
, colorPerlin(123123)
, currentLod(0)
{
currentLod = planetMeshLods.size() - 1; // Start with max LOD
initialVertexMap = {
{{ 0.0f, 1.0f, 0.0f}, "A"},
{{ 0.0f, -1.0f, 0.0f}, "B"},
{{ 1.0f, 0.0f, 0.0f}, "C"},
{{-1.0f, 0.0f, 0.0f}, "D"},
{{ 0.0f, 0.0f, 1.0f}, "E"},
{{ 0.0f, 0.0f, -1.0f}, "F"}
};
}
void PlanetData::init() {
for (int i = 0; i < planetMeshLods.size(); i++) {
planetMeshLods[i] = generateSphere(i, 0.025f);
planetMeshLods[i].Scale(PLANET_RADIUS);
planetMeshLods[i].Move(PLANET_CENTER_OFFSET);
}
for (int i = 0; i < planetMeshLodsNoDist.size(); i++) {
planetMeshLodsNoDist[i] = generateSphere(i, 0);
planetMeshLodsNoDist[i].Scale(PLANET_RADIUS);
planetMeshLodsNoDist[i].Move(PLANET_CENTER_OFFSET);
}
planetAtmosphereLod = generateSphere(5, 0);
planetAtmosphereLod.Scale(PLANET_RADIUS * 1.03);
planetAtmosphereLod.Move(PLANET_CENTER_OFFSET);
}
const LodLevel& PlanetData::getLodLevel(int level) const {
return planetMeshLods.at(level);
}
const LodLevel& PlanetData::getLodLevelNoDist(int level) const {
return planetMeshLodsNoDist.at(level);
}
const LodLevel& PlanetData::getAtmosphereLod() const {
return planetAtmosphereLod;
}
int PlanetData::getCurrentLodIndex() const {
return currentLod;
}
int PlanetData::getMaxLodIndex() const {
return static_cast<int>(planetMeshLods.size() - 1);
}
std::pair<float, float> PlanetData::calculateZRange(float dToPlanetSurface) {
float currentZNear;
float currentZFar;
float alpha;
if (dToPlanetSurface > 2000)
{
currentZNear = 1000;
currentZFar = currentZNear * 100;
}
else if (dToPlanetSurface > 1200)
{
currentZNear = 500;
currentZFar = currentZNear * 100;
}
else if (dToPlanetSurface > 650)
{
currentZNear = 250;
currentZFar = currentZNear * 100;
}
else if (dToPlanetSurface > 160)
{
currentZNear = 125;
currentZFar = currentZNear * 150;
}
else if (dToPlanetSurface > 100)
{
currentZNear = 65;
currentZFar = currentZNear * 170;
}
else if (dToPlanetSurface > 40)
{
currentZNear = 32;
currentZFar = 10000.f;
}
else
{
currentZNear = 16;
currentZFar = 5000.f;
}
return { currentZNear, currentZFar };
}
float PlanetData::distanceToPlanetSurface(const Vector3f& viewerPosition) {
Vector3f shipLocalPosition = viewerPosition - PLANET_CENTER_OFFSET;
// Èñïîëüçóåì getTrianglesUnderCamera äëÿ ïîèñêà
// ÂÍÈÌÀÍÈÅ: Çäåñü ðåêóðñèÿ ëîãèêè. Ìåòîä getTrianglesUnderCamera èñïîëüçóåò âíóòðè viewerPosition.
// ×òîáû íå äóáëèðîâàòü êîä, ïåðåïèøåì ëîãèêó ïîèñêà çäåñü èëè áóäåì èñïîëüçîâàòü óæå íàéäåííûé ðàíåå.
// Äëÿ ïðîñòîòû îñòàâèì ëîãèêó êàê â îðèãèíàëå, íî àäàïòèðîâàííóþ.
// ÂÀÆÍÎ: getTrianglesUnderCamera - ýòî "òÿæåëàÿ" ôóíêöèÿ. Â îðèãèíàëå îíà âûçûâàëàñü âíóòðè distanceToPlanetSurface.
// Íî îíà òðåáóåò LOD. Èñïîëüçóåì MAX LOD äëÿ òî÷íîñòè.
// Ðåêóðñèâíûé ïîèñê òðåóãîëüíèêîâ ïîä êàìåðîé.
// Çäåñü íàì íóæíî ðåàëèçîâàòü àíàëîã triangleUnderCamera, íî íå çàâèñÿùèé îò ãëîáàëüíîãî ñîñòîÿíèÿ.
// Â îðèãèíàëå ôóíêöèÿ triangleUnderCamera áûëà ðåêóðñèâíîé.
// Íèæå ÿ ðåàëèçóþ èòåðàòèâíûé èëè ðåêóðñèâíûé ïîäõîä âíóòðè getTrianglesUnderCamera.
// Âðåìåííîå ðåøåíèå: ïîëíàÿ êîïèÿ ëîãèêè ïîèñêà òðåóãîëüíèêà
// Íî íàì íóæåí äîñòóï ê ìåòîäó.
std::vector<int> targetTriangles = getTrianglesUnderCamera(viewerPosition);
if (targetTriangles.empty()) {
return (shipLocalPosition.length() - PLANET_RADIUS);
}
float lowestDistance;
int tri_index = targetTriangles[0];
const auto& posData = planetMeshLods[currentLod].vertexData.PositionData;
size_t data_index = tri_index * 3;
if (data_index + 2 >= posData.size()) {
return (shipLocalPosition.length() - PLANET_RADIUS);
}
const Vector3f& A = posData[data_index];
const Vector3f& B = posData[data_index + 1];
const Vector3f& C = posData[data_index + 2];
Vector3f P_proj = projectPointOnPlane(shipLocalPosition, A, B, C);
Vector3f P_closest = P_proj;
lowestDistance = (shipLocalPosition - P_closest).length();
if (targetTriangles.size() <= 1)
{
return lowestDistance;
}
else
{
for (int i = 0; i < targetTriangles.size(); i++)
{
int tri_index = targetTriangles[i];
const auto& posData = planetMeshLods[currentLod].vertexData.PositionData;
size_t data_index = tri_index * 3;
if (data_index + 2 >= posData.size()) {
return (shipLocalPosition.length() - PLANET_RADIUS);
}
const Vector3f& A = posData[data_index];
const Vector3f& B = posData[data_index + 1];
const Vector3f& C = posData[data_index + 2];
Vector3f P_proj = projectPointOnPlane(shipLocalPosition, A, B, C);
Vector3f P_closest = P_proj;
if (lowestDistance < (shipLocalPosition - P_closest).length())
{
lowestDistance = (shipLocalPosition - P_closest).length();
}
}
return lowestDistance;
}
}
// --- Ðåàëèçàöèÿ getTrianglesUnderCamera (áûâøàÿ triangleUnderCamera) ---
// Âñïîìîãàòåëüíàÿ ðåêóðñèâíàÿ ôóíêöèÿ, ñêðûòàÿ îò ïóáëè÷íîãî API
static std::vector<int> recursiveTriangleSearch(int lod, const Vector3f& pos, const std::array<LodLevel, MAX_LOD_LEVELS>& meshes) {
std::vector<int> r;
// Ëîãèêà óðîâíÿ 0 (áàçîâûé îêòàýäð)
if (lod == 0) {
if (pos.v[1] >= 0) {
if (pos.v[0] >= 0 && pos.v[2] >= 0) r.push_back(0);
if (pos.v[0] >= 0 && pos.v[2] <= 0) r.push_back(1);
if (pos.v[0] <= 0 && pos.v[2] <= 0) r.push_back(2);
if (pos.v[0] <= 0 && pos.v[2] >= 0) r.push_back(3);
}
if (pos.v[1] <= 0) {
if (pos.v[0] >= 0 && pos.v[2] >= 0) r.push_back(4);
if (pos.v[0] <= 0 && pos.v[2] >= 0) r.push_back(5);
if (pos.v[0] <= 0 && pos.v[2] <= 0) r.push_back(6);
if (pos.v[0] >= 0 && pos.v[2] <= 0) r.push_back(7);
}
}
else {
// Ðåêóðñèâíûé øàã
std::vector<int> r0 = recursiveTriangleSearch(lod - 1, pos, meshes);
for (int tri0 : r0) {
Vector3f a = meshes[lod - 1].vertexData.PositionData[tri0 * 3];
Vector3f b = meshes[lod - 1].vertexData.PositionData[tri0 * 3 + 1];
Vector3f c = meshes[lod - 1].vertexData.PositionData[tri0 * 3 + 2];
std::vector<int> result = PlanetData::find_sub_triangle_spherical(a, b, c, pos);
for (int trix : result) {
r.push_back(tri0 * 4 + trix);
}
}
}
return r;
}
std::vector<int> PlanetData::getTrianglesUnderCamera(const Vector3f& viewerPosition) {
// Âûçûâàåì ðåêóðñèþ ñ òåêóùèì LOD
return recursiveTriangleSearch(currentLod, viewerPosition, planetMeshLods);
}
// --- Îñòàëüíûå ìåòîäû (check_spherical_side, generateSphere è ò.ä.) ---
// (Êîïèðóéòå ðåàëèçàöèþ èç ñòàðîãî PlanetObject.cpp,
// çàìåíÿÿ îáðàùåíèÿ ê Environment::shipPosition íà àðãóìåíòû, åñëè íóæíî,
// è èñïîëüçóÿ this->planetMeshLods)
float PlanetData::check_spherical_side(const Vector3f& V1, const Vector3f& V2, const Vector3f& P, const Vector3f& V3, float epsilon) {
Vector3f N_plane = V1.cross(V2);
float sign_P = P.dot(N_plane);
float sign_V3 = V3.dot(N_plane);
return sign_P * sign_V3;
}
bool PlanetData::is_inside_spherical_triangle(const Vector3f& P, const Vector3f& V1, const Vector3f& V2, const Vector3f& V3, float epsilon) {
if (check_spherical_side(V1, V2, P, V3, epsilon) < -epsilon) return false;
if (check_spherical_side(V2, V3, P, V1, epsilon) < -epsilon) return false;
if (check_spherical_side(V3, V1, P, V2, epsilon) < -epsilon) return false;
return true;
}
std::vector<int> PlanetData::find_sub_triangle_spherical(const Vector3f& a_orig, const Vector3f& b_orig, const Vector3f& c_orig, const Vector3f& px_orig) {
const float EPSILON = 1e-6f;
std::vector<int> result;
const Vector3f a = a_orig.normalized();
const Vector3f b = b_orig.normalized();
const Vector3f c = c_orig.normalized();
const Vector3f pxx_normalized = px_orig.normalized();
const Vector3f m_ab = ((a + b) * 0.5f).normalized();
const Vector3f m_bc = ((b + c) * 0.5f).normalized();
const Vector3f m_ac = ((a + c) * 0.5f).normalized();
if (is_inside_spherical_triangle(pxx_normalized, a, m_ab, m_ac, EPSILON)) result.push_back(0);
if (is_inside_spherical_triangle(pxx_normalized, m_ab, b, m_bc, EPSILON)) result.push_back(1);
if (is_inside_spherical_triangle(pxx_normalized, m_ac, m_bc, c, EPSILON)) result.push_back(2);
if (is_inside_spherical_triangle(pxx_normalized, m_ab, m_bc, m_ac, EPSILON)) result.push_back(3);
return result;
}
std::vector<Triangle> PlanetData::subdivideTriangles(const std::vector<Triangle>& input, float noiseCoeff) {
std::vector<Triangle> output;
for (const auto& t : input) {
// Âåðøèíû è èõ ID
const Vector3f& a = t.data[0];
const Vector3f& b = t.data[1];
const Vector3f& c = t.data[2];
const VertexID& id_a = t.ids[0];
const VertexID& id_b = t.ids[1];
const VertexID& id_c = t.ids[2];
// 1. Âû÷èñëÿåì ñåðåäèíû (êîîðäèíàòû)
Vector3f m_ab = ((a + b) * 0.5f).normalized();
Vector3f m_bc = ((b + c) * 0.5f).normalized();
Vector3f m_ac = ((a + c) * 0.5f).normalized();
Vector3f pm_ab = m_ab * perlin.getSurfaceHeight(m_ab, noiseCoeff);
Vector3f pm_bc = m_bc * perlin.getSurfaceHeight(m_bc, noiseCoeff);
Vector3f pm_ac = m_ac * perlin.getSurfaceHeight(m_ac, noiseCoeff);
// 2. Âû÷èñëÿåì ID íîâûõ âåðøèí
VertexID id_mab = generateEdgeID(id_a, id_b);
VertexID id_mbc = generateEdgeID(id_b, id_c);
VertexID id_mac = generateEdgeID(id_a, id_c);
// 3. Ôîðìèðóåì 4 íîâûõ òðåóãîëüíèêà
output.emplace_back(Triangle{ {a, pm_ab, pm_ac}, {id_a, id_mab, id_mac} }); // 0
output.emplace_back(Triangle{ {pm_ab, b, pm_bc}, {id_mab, id_b, id_mbc} }); // 1
output.emplace_back(Triangle{ {pm_ac, pm_bc, c}, {id_mac, id_mbc, id_c} }); // 2
output.emplace_back(Triangle{ {pm_ab, pm_bc, pm_ac}, {id_mab, id_mbc, id_mac} }); // 3
}
return output;
}
LodLevel PlanetData::trianglesToVertices(const std::vector<Triangle>& geometry) {
LodLevel result;
result.triangles = geometry;
size_t vertexCount = geometry.size() * 3;
result.vertexData.PositionData.reserve(vertexCount);
result.vertexData.NormalData.reserve(vertexCount);
result.vertexData.TexCoordData.reserve(vertexCount);
result.vertexData.TangentData.reserve(vertexCount); // Äîáàâëÿåì ðåçåðâ
result.vertexData.BinormalData.reserve(vertexCount);
result.VertexIDs.reserve(vertexCount);
const std::array<Vector2f, 3> triangleUVs = {
Vector2f(0.5f, 1.0f),
Vector2f(0.0f, 0.0f),
Vector2f(1.0f, 0.0f)
};
for (const auto& t : geometry) {
// --- Âû÷èñëÿåì ëîêàëüíûé áàçèñ òðåóãîëüíèêà (êàê â GetRotationForTriangle) ---
Vector3f vA = t.data[0];
Vector3f vB = t.data[1];
Vector3f vC = t.data[2];
Vector3f x_axis = (vC - vB).normalized(); // Íàïðàâëåíèå U
Vector3f edge1 = vB - vA;
Vector3f edge2 = vC - vA;
Vector3f z_axis = edge1.cross(edge2).normalized(); // Íîðìàëü ïëîñêîñòè
// Ïðîâåðêà íàïðàâëåíèÿ íîðìàëè íàðóæó (îò öåíòðà ïëàíåòû)
Vector3f centerToTri = (vA + vB + vC).normalized();
if (z_axis.dot(centerToTri) < 0) {
z_axis = z_axis * -1.0f;
}
Vector3f y_axis = z_axis.cross(x_axis).normalized(); // Íàïðàâëåíèå V
for (int i = 0; i < 3; ++i) {
result.vertexData.PositionData.push_back(t.data[i]);
result.vertexData.NormalData.push_back(z_axis); // Ïëîñêàÿ íîðìàëü ãðàíè äëÿ Parallax
result.vertexData.TexCoordData.push_back(triangleUVs[i]);
// Çàïèñûâàåì âû÷èñëåííûé áàçèñ â êàæäóþ âåðøèíó òðåóãîëüíèêà
result.vertexData.TangentData.push_back(x_axis);
result.vertexData.BinormalData.push_back(y_axis);
result.VertexIDs.push_back(t.ids[i]);
}
}
return result;
}
LodLevel PlanetData::generateSphere(int subdivisions, float noiseCoeff) {
// 1. Èñõîäíûé îêòàýäð è ïðèñâîåíèå ID
std::vector<Triangle> geometry = {
// Âåðõíÿÿ ïîëóñôåðà (Y > 0)
{{ 0.0f, 1.0f, 0.0f}, { 1.0f, 0.0f, 0.0f}, { 0.0f, 0.0f, 1.0f}}, // 0
{{ 0.0f, 1.0f, 0.0f}, { 0.0f, 0.0f, -1.0f}, { 1.0f, 0.0f, 0.0f}}, // 1
{{ 0.0f, 1.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, { 0.0f, 0.0f, -1.0f}}, // 2
{{ 0.0f, 1.0f, 0.0f}, { 0.0f, 0.0f, 1.0f}, {-1.0f, 0.0f, 0.0f}}, // 3
// Íèæíÿÿ ïîëóñôåðà (Y < 0)
{{ 0.0f, -1.0f, 0.0f}, { 0.0f, 0.0f, 1.0f}, { 1.0f, 0.0f, 0.0f}}, // 4
{{ 0.0f, -1.0f, 0.0f}, { 1.0f, 0.0f, 0.0f}, { 0.0f, 0.0f, -1.0f}}, // 5
{{ 0.0f, -1.0f, 0.0f}, { 0.0f, 0.0f, -1.0f}, {-1.0f, 0.0f, 0.0f}}, // 6
{{ 0.0f, -1.0f, 0.0f}, {-1.0f, 0.0f, 0.0f}, { 0.0f, 0.0f, 1.0f}} // 7
};
// Ïðèñâîåíèå ID èñõîäíûì âåðøèíàì
for (auto& t : geometry) {
for (int i = 0; i < 3; i++) {
// Èñïîëüçóåì map äëÿ ïîëó÷åíèÿ ID ïî ÷èñòûì êîîðäèíàòàì (íîðì. == ÷èñòûå)
t.ids[i] = initialVertexMap[t.data[i].normalized()];
}
}
// 3. Ðàçáèâàåì N ðàç (â subdivideTriangles ãåíåðèðóþòñÿ ID íîâûõ âåðøèí)
for (int i = 0; i < subdivisions; i++) {
geometry = subdivideTriangles(geometry, noiseCoeff);
}
// 4. Ãåíåðèðóåì PositionData, NormalData è VertexIDs
LodLevel lodLevel = trianglesToVertices(geometry);
// 5. Ñîçäàíèå V2T-Map íà îñíîâå VertexIDs (ÒÎÏÎËÎÃÈ×ÅÑÊÈÉ ÊËÞ×)
V2TMap v2tMap;
const auto& finalVertexIDs = lodLevel.VertexIDs;
size_t num_triangles = geometry.size();
for (size_t i = 0; i < num_triangles; ++i) {
for (int j = 0; j < 3; ++j) {
VertexID v_id = finalVertexIDs[i * 3 + j];
// Åñëè êëþ÷ óæå åñòü, ïðîñòî äîáàâëÿåì èíäåêñ
v2tMap[v_id].push_back((int)i);
}
}
lodLevel.v2tMap = v2tMap;
// 6. Ïðèìåíåíèå ôèíàëüíîãî øóìà (åñëè âû õîòåëè, ÷òîáû øóì áûë òîëüêî çäåñü)
// Çäåñü ìû äîëæíû áûëè áû ïðèìåíèòü øóì ê buffer.PositionData,
// íî â âàøåì èñõîäíîì êîäå øóì ïðèìåíÿëñÿ ðàíåå.
// Ïðåäïîëàãàåì, ÷òî øóì áóäåò ïðèìåíåí çäåñü (èíà÷å v2tMap íå áóäåò ñîîòâåòñòâîâàòü).
// ÂÎÑÑÒÀÍÎÂÈÌ ØÀÃ 2, íî äëÿ ôèíàëüíîé ãåîìåòðèè:
for (size_t i = 0; i < lodLevel.vertexData.PositionData.size(); i++) {
Vector3f dir = lodLevel.vertexData.PositionData[i].normalized();
lodLevel.vertexData.PositionData[i] = dir * perlin.getSurfaceHeight(dir, noiseCoeff);
}
// 7. Ãåíåðàöèÿ ColorData
lodLevel.vertexData.ColorData.reserve(geometry.size() * 3);
const Vector3f baseColor = { 0.498f, 0.416f, 0.0f };
const float colorFrequency = 5.0f;
const float colorAmplitude = 0.2f;
const Vector3f offsetR = { 0.1f, 0.2f, 0.3f };
const Vector3f offsetG = { 0.5f, 0.4f, 0.6f };
const Vector3f offsetB = { 0.9f, 0.8f, 0.7f };
for (size_t i = 0; i < geometry.size(); i++) {
for (int j = 0; j < 3; j++) {
// Èñïîëüçóåì íîðìàëèçîâàííûé âåêòîð èç PositionData (êîòîðûé ðàâåí NormalData)
Vector3f dir = lodLevel.vertexData.NormalData[i * 3 + j];
// Âû÷èñëåíèå öâåòîâîãî øóìà
float noiseR = colorPerlin.noise(
(dir.v[0] + offsetR.v[0]) * colorFrequency,
(dir.v[1] + offsetR.v[1]) * colorFrequency,
(dir.v[2] + offsetR.v[2]) * colorFrequency
);
// ... (àíàëîãè÷íî äëÿ noiseG è noiseB)
// Çäåñü ìû èñïîëüçóåì çàãëóøêè, òàê êàê íåò ïîëíîãî îïðåäåëåíèÿ PerlinNoise
float noiseG = 0.0f;
float noiseB = 0.0f;
Vector3f colorOffset = {
noiseR * colorAmplitude,
noiseG * colorAmplitude,
noiseB * colorAmplitude
};
Vector3f finalColor = baseColor + colorOffset;
lodLevel.vertexData.ColorData.push_back(finalColor);
}
}
return lodLevel;
}
// Ïðèìåð findNeighbors:
std::vector<int> PlanetData::findNeighbors(int index, int lod) {
const V2TMap& v2tMap = planetMeshLods[lod].v2tMap;
const auto& vertexIDs = planetMeshLods[lod].VertexIDs;
if ((index * 3 + 2) >= vertexIDs.size()) return {};
std::set<int> neighbors;
for (int i = 0; i < 3; ++i) {
VertexID v_id = vertexIDs[index * 3 + i];
auto it = v2tMap.find(v_id);
if (it != v2tMap.end()) {
for (int tri_index : it->second) {
if (tri_index != index) {
neighbors.insert(tri_index);
}
}
}
}
return std::vector<int>(neighbors.begin(), neighbors.end());
}
}