Merge branch 'main' into sergey

This commit is contained in:
Vladislav Khorev 2026-01-18 13:35:06 +03:00
commit 96d879076a
22 changed files with 1278 additions and 285 deletions

View File

@ -50,6 +50,13 @@ add_executable(space-game001
../src/UiManager.h
../src/Projectile.h
../src/Projectile.cpp
../src/network/NetworkInterface.h
../src/network/LocalClient.h
../src/network/LocalClient.cpp
../src/network/ClientState.h
../src/network/ClientState.cpp
../src/network/WebSocketClient.h
../src/network/WebSocketClient.cpp
)
# Установка проекта по умолчанию для Visual Studio
@ -71,6 +78,7 @@ target_compile_definitions(space-game001 PRIVATE
WIN32_LEAN_AND_MEAN
PNG_ENABLED
SDL_MAIN_HANDLED
# NETWORK
# SIMPLIFIED
)

View File

@ -9,7 +9,7 @@
"lifeTimeRange": [200.0, 800.0],
"emissionRate": 50.0,
"maxParticles": 5,
"particleSize": 0.5,
"particleSize": 2,
"biasX": 0.1,
"shaderProgramName": "default"
}

47
server/CMakeLists.txt Normal file
View File

@ -0,0 +1,47 @@
cmake_minimum_required(VERSION 3.15)
project(SpaceGameServer)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Подключаем зависимости нашего движка
include(${CMAKE_CURRENT_SOURCE_DIR}/../cmake/ThirdParty.cmake)
# Настройка флагов для тяжелых шаблонов Boost
if (MSVC)
add_compile_options(/bigobj)
endif()
# Добавляем скомпилированные компоненты Boost через относительные пути
# CMake сам создаст цели boost_system и др.
add_subdirectory("${BOOST_SRC_DIR}/libs/system" boost-system-build EXCLUDE_FROM_ALL)
add_subdirectory("${BOOST_SRC_DIR}/libs/assert" boost-assert-build EXCLUDE_FROM_ALL)
add_subdirectory("${BOOST_SRC_DIR}/libs/config" boost-config-build EXCLUDE_FROM_ALL)
add_subdirectory("${BOOST_SRC_DIR}/libs/throw_exception" boost-throw_exception-build EXCLUDE_FROM_ALL)
add_subdirectory("${BOOST_SRC_DIR}/libs/variant2" boost-variant2-build EXCLUDE_FROM_ALL)
add_subdirectory("${BOOST_SRC_DIR}/libs/mp11" boost-mp11-build EXCLUDE_FROM_ALL)
add_subdirectory("${BOOST_SRC_DIR}/libs/winapi" boost-winapi-build EXCLUDE_FROM_ALL)
add_subdirectory("${BOOST_SRC_DIR}/libs/predef" boost-predef-build EXCLUDE_FROM_ALL)
# EXCLUDE_FROM_ALL гарантирует, что мы собираем только то, что линкуем
# Исполняемый файл сервера
add_executable(Server
server.cpp
../src/network/ClientState.h
)
target_include_directories(Server PRIVATE ${BOOST_SRC_DIR})
# Линковка
target_link_libraries(Server
PRIVATE
boost_system # Скомпилированная часть для error_code
eigen_external_lib # Если планируешь использовать математику на сервере
)
if(WIN32)
target_link_libraries(Server PRIVATE ws2_32 mswsock)
endif()
# Дополнительный макрос, чтобы Asio знал, что мы работаем без устаревших функций
target_compile_definitions(Server PRIVATE BOOST_ASIO_NO_DEPRECATED)

182
server/server.cpp Normal file
View File

@ -0,0 +1,182 @@
#include <boost/beast/core.hpp>
#include <boost/beast/websocket.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <iostream>
#include <string>
#include <memory>
#include <vector>
#include <mutex>
#include <map>
#include <Eigen/Dense>
#define _USE_MATH_DEFINES
#include <math.h>
#include "../src/network/ClientState.h"
// Вспомогательный split
std::vector<std::string> split(const std::string& s, char delimiter) {
std::vector<std::string> tokens;
std::string token;
std::istringstream tokenStream(s);
while (std::getline(tokenStream, token, delimiter)) {
tokens.push_back(token);
}
return tokens;
}
namespace beast = boost::beast;
namespace http = beast::http;
namespace websocket = beast::websocket;
namespace net = boost::asio;
using tcp = net::ip::tcp;
class Session;
std::vector<std::shared_ptr<Session>> g_sessions;
std::mutex g_sessions_mutex;
class Session : public std::enable_shared_from_this<Session> {
websocket::stream<beast::tcp_stream> ws_;
beast::flat_buffer buffer_;
int id_;
ClientStateInterval timedClientStates;
void process_message(const std::string& msg) {
auto now_server = std::chrono::system_clock::now();
auto parts = split(msg, ':');
if (parts.size() < 16)
{
throw std::runtime_error("Unknown message type received, too small");
}
uint64_t clientTimestamp = std::stoull(parts[1]);
ClientState receivedState;
receivedState.id = id_;
std::chrono::system_clock::time_point uptime_timepoint{ std::chrono::duration_cast<std::chrono::system_clock::time_point::duration>(std::chrono::milliseconds(clientTimestamp)) };
receivedState.lastUpdateServerTime = uptime_timepoint;
if (parts[0] == "UPD") {
receivedState.handle_full_sync(parts, 2);
retranslateMessage(msg);
}
else
{
throw std::runtime_error("Unknown message type received: " + parts[0]);
}
timedClientStates.add_state(receivedState);
}
void retranslateMessage(const std::string& msg)
{
std::string event_msg = "EVENT:" + std::to_string(id_) + ":" + msg;
std::lock_guard<std::mutex> lock(g_sessions_mutex);
for (auto& session : g_sessions) {
if (session->get_id() != id_) { // Не шлем отправителю
session->send_message(event_msg);
}
}
}
public:
explicit Session(tcp::socket&& socket, int id)
: ws_(std::move(socket)), id_(id) {
}
void init()
{
}
void run() {
{
std::lock_guard<std::mutex> lock(g_sessions_mutex);
g_sessions.push_back(shared_from_this());
}
ws_.async_accept([self = shared_from_this()](beast::error_code ec) {
if (ec) return;
std::cout << "Client " << self->id_ << " connected\n";
self->init();
self->send_message("ID:" + std::to_string(self->id_));
self->do_read();
});
}
void send_message(std::string msg) {
auto ss = std::make_shared<std::string>(std::move(msg));
ws_.async_write(net::buffer(*ss), [ss](beast::error_code, std::size_t) {});
}
int get_id() const {
return id_;
}
private:
void do_read() {
ws_.async_read(buffer_, [self = shared_from_this()](beast::error_code ec, std::size_t) {
if (ec)
{
std::lock_guard<std::mutex> lock(g_sessions_mutex);
g_sessions.erase(std::remove_if(g_sessions.begin(), g_sessions.end(),
[self](const std::shared_ptr<Session>& session) {
return session.get() == self.get();
}), g_sessions.end());
return;
}
std::string msg = beast::buffers_to_string(self->buffer_.data());
self->process_message(msg);
self->buffer_.consume(self->buffer_.size());
self->do_read();
});
}
};
void update_world(net::steady_timer& timer, net::io_context& ioc) {
// TODO: Renew game state
timer.expires_after(std::chrono::milliseconds(50));
timer.async_wait([&](const boost::system::error_code& ec) {
if (!ec) update_world(timer, ioc);
});
}
int main() {
try {
net::io_context ioc;
tcp::acceptor acceptor{ ioc, {tcp::v4(), 8080} };
int next_id = 1000;
std::cout << "Server started on port 8080...\n";
auto do_accept = [&](auto& self_fn) -> void {
acceptor.async_accept([&, self_fn](beast::error_code ec, tcp::socket socket) {
if (!ec) {
std::make_shared<Session>(std::move(socket), next_id++)->run();
}
self_fn(self_fn);
});
};
net::steady_timer timer(ioc);
update_world(timer, ioc);
do_accept(do_accept);
ioc.run();
}
catch (std::exception const& e) {
std::cerr << "Error: " << e.what() << std::endl;
}
return 0;
}

View File

@ -10,26 +10,20 @@
#endif
namespace ZL {
int Environment::windowHeaderHeight = 0;
int Environment::width = 0;
int Environment::height = 0;
float Environment::zoom = 36.f;
float Environment::zoom = DEFAULT_ZOOM;
bool Environment::leftPressed = false;
bool Environment::rightPressed = false;
bool Environment::upPressed = false;
bool Environment::downPressed = false;
bool Environment::settings_inverseVertical = false;
SDL_Window* Environment::window = nullptr;
bool Environment::showMouse = false;
bool Environment::exitGameLoop = false;
Eigen::Matrix3f Environment::shipMatrix = Eigen::Matrix3f::Identity();
Eigen::Matrix3f Environment::inverseShipMatrix = Eigen::Matrix3f::Identity();
@ -37,10 +31,7 @@ bool Environment::tapDownHold = false;
Eigen::Vector2f Environment::tapDownStartPos = { 0, 0 };
Eigen::Vector2f Environment::tapDownCurrentPos = { 0, 0 };
Eigen::Vector3f Environment::shipPosition = {0,0,45000.f};
float Environment::shipVelocity = 0.f;
ClientState Environment::shipState;
const float Environment::CONST_Z_NEAR = 5.f;
const float Environment::CONST_Z_FAR = 5000.f;

View File

@ -6,9 +6,12 @@
#include "render/OpenGlExtensions.h"
#endif
#include <Eigen/Dense>
#include "network/ClientState.h"
namespace ZL {
constexpr float DEFAULT_ZOOM = 36.f;
class Environment {
public:
static int windowHeaderHeight;
@ -16,14 +19,6 @@ public:
static int height;
static float zoom;
static bool leftPressed;
static bool rightPressed;
static bool upPressed;
static bool downPressed;
static bool settings_inverseVertical;
static Eigen::Matrix3f shipMatrix;
static Eigen::Matrix3f inverseShipMatrix;
static SDL_Window* window;
@ -31,13 +26,11 @@ public:
static bool showMouse;
static bool exitGameLoop;
static bool tapDownHold;
static Eigen::Vector2f tapDownStartPos;
static Eigen::Vector2f tapDownCurrentPos;
static Eigen::Vector3f shipPosition;
static float shipVelocity;
static ClientState shipState;
static const float CONST_Z_NEAR;
static const float CONST_Z_FAR;

View File

@ -1,6 +1,7 @@
#include "Game.h"
#include "AnimatedModel.h"
#include "BoneAnimatedModel.h"
#include "planet/PlanetData.h"
#include "utils/Utils.h"
#include "render/OpenGlExtensions.h"
#include <iostream>
@ -13,6 +14,12 @@
#include <android/log.h>
#endif
#ifdef NETWORK
#include "network/WebSocketClient.h"
#else
#include "network/LocalClient.h"
#endif
namespace ZL
{
#ifdef EMSCRIPTEN
@ -133,33 +140,6 @@ namespace ZL
ZL::BindOpenGlFunctions();
ZL::CheckGlError();
#ifdef __ANDROID__
__android_log_print(ANDROID_LOG_INFO, "Game", "Start for Android");
const char* testFiles[] = {
"resources/shaders/default.vertex",
"resources/shaders/default_web.fragment",
nullptr
};
for (int i = 0; testFiles[i] != nullptr; i++) {
SDL_RWops* file = SDL_RWFromFile(testFiles[i], "rb");
if (file) {
Sint64 size = SDL_RWsize(file);
__android_log_print(ANDROID_LOG_INFO, "Game", "Found: %s (size: %lld)", testFiles[i], size);
SDL_RWclose(file);
}
else {
__android_log_print(ANDROID_LOG_WARN, "Game", "Not found: %s (SDL error: %s)",
testFiles[i], SDL_GetError());
}
}
__android_log_print(ANDROID_LOG_ERROR, "ShaderManager",
"Step 1xxxxxxx");
#endif
// Initialize renderer
#ifndef SIMPLIFIED
renderer.shaderManager.AddShaderFromFiles("defaultColor", "resources/shaders/defaultColor.vertex", "resources/shaders/defaultColor_web.fragment", CONST_ZIP_FILE);
@ -172,37 +152,11 @@ namespace ZL
#else
renderer.shaderManager.AddShaderFromFiles("default", "resources/shaders/default.vertex", "resources/shaders/default_web.fragment", CONST_ZIP_FILE);
#ifdef __ANDROID__
__android_log_print(ANDROID_LOG_ERROR, "ShaderManager",
"Step 2xxxxxxx");
#endif
renderer.shaderManager.AddShaderFromFiles("env_sky", "resources/shaders/default_env.vertex", "resources/shaders/default_env_web.fragment", CONST_ZIP_FILE);
#ifdef __ANDROID__
__android_log_print(ANDROID_LOG_INFO, "ShaderManager",
"Step 2");
#endif
renderer.shaderManager.AddShaderFromFiles("defaultAtmosphere", "resources/shaders/default_texture.vertex", "resources/shaders/default_texture_web.fragment", CONST_ZIP_FILE);
#ifdef __ANDROID__
__android_log_print(ANDROID_LOG_INFO, "ShaderManager",
"Step 3");
#endif
renderer.shaderManager.AddShaderFromFiles("planetBake", "resources/shaders/default_texture.vertex", "resources/shaders/default_texture_web.fragment", CONST_ZIP_FILE);
#ifdef __ANDROID__
__android_log_print(ANDROID_LOG_INFO, "ShaderManager",
"Step 4");
#endif
renderer.shaderManager.AddShaderFromFiles("planetStone", "resources/shaders/default_texture.vertex", "resources/shaders/default_texture_web.fragment", CONST_ZIP_FILE);
#ifdef __ANDROID__
__android_log_print(ANDROID_LOG_INFO, "ShaderManager",
"Step 5");
#endif
renderer.shaderManager.AddShaderFromFiles("planetLand", "resources/shaders/default_texture.vertex", "resources/shaders/default_texture_web.fragment", CONST_ZIP_FILE);
#ifdef __ANDROID__
__android_log_print(ANDROID_LOG_INFO, "ShaderManager",
"Step 1");
#endif
#endif
bool cfgLoaded = sparkEmitter.loadFromJsonFile("resources/config/spark_config.json", renderer, CONST_ZIP_FILE);
@ -283,16 +237,12 @@ namespace ZL
});
uiManager.setSliderCallback("velocitySlider", [this](const std::string& name, float value) {
Environment::shipVelocity = value * 1000.f;
int newVel = roundf(value * 10);
if (newVel != Environment::shipState.selectedVelocity) {
newShipVelocity = newVel;
}
});
/*uiManager.setSliderCallback("musicVolumeSlider", [this](const std::string& name, float value) {
std::cerr << "Music volume slider changed to: " << value << std::endl;
musicVolume = value;
Environment::shipVelocity = musicVolume * 20.0f;
});
//#endif*/
cubemapTexture = std::make_shared<Texture>(
std::array<TextureDataStruct, 6>{
CreateTextureDataFromPng("resources/sky/space1.png", CONST_ZIP_FILE),
@ -324,10 +274,6 @@ namespace ZL
spaceshipBase.RotateByMatrix(Eigen::Quaternionf(Eigen::AngleAxisf(M_PI, Eigen::Vector3f::UnitY())).toRotationMatrix());// QuatFromRotateAroundY(M_PI / 2.0).toRotationMatrix());
spaceshipBase.Move(Vector3f{ 1.2, 0, -5 });
//spaceshipBase.Move(Vector3f{ -0.52998, -13, 0 });
//spaceshipBase.Move(Vector3f{ -0.52998, -10, 10 });
//spaceshipBase.Move(Vector3f{ -0.52998, 0, 10 });
spaceship.AssignFrom(spaceshipBase);
spaceship.RefreshVBO();
@ -337,16 +283,8 @@ namespace ZL
boxTexture = std::make_unique<Texture>(CreateTextureDataFromPng("resources/box/box.png", CONST_ZIP_FILE));
boxBase = LoadFromTextFile02("resources/box/box.txt", CONST_ZIP_FILE);
std::cout << "Init step 1 " << std::endl;
boxCoordsArr = generateRandomBoxCoords(50);
std::cout << "Init step 2 " << std::endl;
boxRenderArr.resize(boxCoordsArr.size());
std::cout << "Init step 3x " << std::endl;
for (int i = 0; i < boxCoordsArr.size(); i++)
{
boxRenderArr[i].AssignFrom(boxBase);
@ -356,25 +294,24 @@ namespace ZL
boxAlive.resize(boxCoordsArr.size(), true);
std::cout << "Init step 4 " << std::endl;
if (!cfgLoaded)
{
throw std::runtime_error("Failed to load spark emitter config file!");
}
std::cout << "Init step 5 " << std::endl;
renderer.InitOpenGL();
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
std::cout << "Init step 6 " << std::endl;
planetObject.init();
std::cout << "Init step 7 " << std::endl;
//rockTexture = std::make_unique<Texture>(CreateTextureDataFromPng("./resources/rock.png", CONST_ZIP_FILE));
std::cout << "Init step 8 " << std::endl;
#ifdef NETWORK
networkClient = std::make_unique<WebSocketClient>(taskManager.getIOContext());
networkClient->Connect("127.0.0.1", 8080);
#else
networkClient = std::make_unique<LocalClient>();
networkClient->Connect("", 0);
#endif
}
void Game::drawCubemap(float skyPercent)
@ -413,7 +350,7 @@ namespace ZL
// 1. Вектор направления от центра планеты к игроку (в мировых координатах)
// Предполагаем, что планета в (0,0,0). Если нет, то (shipPosition - planetCenter)
Vector3f playerDirWorld = Environment::shipPosition.normalized();
Vector3f playerDirWorld = Environment::shipState.position.normalized();
// 2. Направление света в мировом пространстве
//Vector3f worldLightDir = Vector3f(1.0f, -1.0f, -1.0f).normalized();
@ -525,7 +462,7 @@ namespace ZL
renderer.LoadIdentity();
renderer.TranslateMatrix({ 0,0, -1.0f * Environment::zoom });
renderer.RotateMatrix(Environment::inverseShipMatrix);
renderer.TranslateMatrix(-Environment::shipPosition);
renderer.TranslateMatrix(-Environment::shipState.position);
renderer.TranslateMatrix({ 0.f, 0.f, 45000.f });
renderer.TranslateMatrix(boxCoordsArr[i].pos);
renderer.RotateMatrix(boxCoordsArr[i].m);
@ -583,7 +520,7 @@ namespace ZL
CheckGlError();
float skyPercent = 0.0;
float distance = planetObject.distanceToPlanetSurface(Environment::shipPosition);
float distance = planetObject.distanceToPlanetSurface(Environment::shipState.position);
if (distance > 1500.f)
{
skyPercent = 0.0f;
@ -600,65 +537,179 @@ namespace ZL
drawCubemap(skyPercent);
planetObject.draw(renderer);
if (planetObject.distanceToPlanetSurface(Environment::shipPosition) > 100.f)
if (planetObject.distanceToPlanetSurface(Environment::shipState.position) > 100.f)
{
glClear(GL_DEPTH_BUFFER_BIT);
}
drawShip();
drawRemoteShips();
drawBoxes();
drawUI();
CheckGlError();
}
void Game::drawRemoteShips() {
// Используем те же константы имен для шейдеров, что и в drawShip
static const std::string defaultShaderName = "default";
static const std::string vPositionName = "vPosition";
static const std::string vTexCoordName = "vTexCoord";
static const std::string textureUniformName = "Texture";
// Активируем шейдер и текстуру (предполагаем, что меш у всех одинаковый)
renderer.shaderManager.PushShader(defaultShaderName);
renderer.RenderUniform1i(textureUniformName, 0);
renderer.EnableVertexAttribArray(vPositionName);
renderer.EnableVertexAttribArray(vTexCoordName);
renderer.PushPerspectiveProjectionMatrix(1.0 / 1.5,
static_cast<float>(Environment::width) / static_cast<float>(Environment::height),
Environment::CONST_Z_NEAR, Environment::CONST_Z_FAR);
// Биндим текстуру корабля один раз для всех удаленных игроков (оптимизация батчинга)
glBindTexture(GL_TEXTURE_2D, spaceshipTexture->getTexID());
auto now = std::chrono::system_clock::now();
//Apply server delay:
now -= std::chrono::milliseconds(CLIENT_DELAY);
latestRemotePlayers = networkClient->getRemotePlayers();
// Итерируемся по актуальным данным из extrapolateRemotePlayers
for (auto const& [id, remotePlayer] : latestRemotePlayers) {
if (!remotePlayer.canFetchClientStateAtTime(now))
{
continue;
}
ClientState playerState = remotePlayer.fetchClientStateAtTime(now);
renderer.PushMatrix();
renderer.LoadIdentity();
renderer.TranslateMatrix({ 0,0, -1.0f * Environment::zoom });
renderer.TranslateMatrix({ 0, -6.f, 0 }); //Ship camera offset
renderer.RotateMatrix(Environment::inverseShipMatrix);
renderer.TranslateMatrix(-Environment::shipState.position);
Eigen::Vector3f relativePos = playerState.position;// -Environment::shipPosition;
renderer.TranslateMatrix(relativePos);
// 3. Поворот врага
renderer.RotateMatrix(playerState.rotation);
renderer.DrawVertexRenderStruct(spaceship);
renderer.PopMatrix();
}
renderer.PopProjectionMatrix();
renderer.DisableVertexAttribArray(vPositionName);
renderer.DisableVertexAttribArray(vTexCoordName);
renderer.shaderManager.PopShader();
CheckGlError();
}
void Game::processTickCount() {
if (lastTickCount == 0) {
lastTickCount = SDL_GetTicks64();
//lastTickCount = SDL_GetTicks64();
lastTickCount = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch()
).count();
return;
}
newTickCount = SDL_GetTicks64();
//newTickCount = SDL_GetTicks64();
newTickCount = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch()
).count();
if (newTickCount - lastTickCount > CONST_TIMER_INTERVAL) {
size_t delta = (newTickCount - lastTickCount > CONST_MAX_TIME_INTERVAL) ?
CONST_MAX_TIME_INTERVAL : newTickCount - lastTickCount;
size_t delta = newTickCount - lastTickCount;
if (delta > CONST_MAX_TIME_INTERVAL)
{
throw std::runtime_error("Synchronization is lost");
}
auto now_ms = newTickCount;
sparkEmitter.update(static_cast<float>(delta));
planetObject.update(static_cast<float>(delta));
if (Environment::tapDownHold) {
static float pingTimer = 0.0f;
pingTimer += delta;
if (pingTimer >= 1000.0f) {
std::string pingMsg = "UPD:" + std::to_string(now_ms) + ":" + Environment::shipState.formPingMessageContent();
networkClient->Send(pingMsg);
std::cout << "Sending: " << pingMsg << std::endl;
pingTimer = 0.0f;
}
//Handle input:
if (newShipVelocity != Environment::shipState.selectedVelocity)
{
Environment::shipState.selectedVelocity = newShipVelocity;
std::string msg = "UPD:" + std::to_string(now_ms) + ":" + Environment::shipState.formPingMessageContent();
networkClient->Send(msg);
}
float discreteMag;
int discreteAngle;
if (Environment::tapDownHold) {
float diffx = Environment::tapDownCurrentPos(0) - Environment::tapDownStartPos(0);
float diffy = Environment::tapDownCurrentPos(1) - Environment::tapDownStartPos(1);
if (abs(diffy) > 5.0 || abs(diffx) > 5.0) //threshold
float rawMag = sqrtf(diffx * diffx + diffy * diffy);
float maxRadius = 200.0f; // Максимальный вынос джойстика
if (rawMag > 10.0f) { // Мертвая зона
// 1. Дискретизируем отклонение (0.0 - 1.0 с шагом 0.1)
float normalizedMag = min(rawMag / maxRadius, 1.0f);
discreteMag = std::round(normalizedMag * 10.0f) / 10.0f;
// 2. Дискретизируем угол (0-359 градусов)
// atan2 возвращает радианы, переводим в градусы
float radians = atan2f(diffy, diffx);
discreteAngle = static_cast<int>(radians * 180.0f / M_PI);
if (discreteAngle < 0) discreteAngle += 360;
}
else
{
float rotationPower = sqrtf(diffx * diffx + diffy * diffy);
float deltaAlpha = rotationPower * delta * static_cast<float>(M_PI) / 500000.f;
Eigen::Vector3f rotationDirection(diffy, diffx, 0.0f);
rotationDirection.normalize(); // Eigen-way нормализация
// Создаем кватернион через AngleAxis
// Конструктор принимает (угол_в_радианах, ось_вращения)
Eigen::Quaternionf rotateQuat(Eigen::AngleAxisf(deltaAlpha, rotationDirection));
Matrix3f rotateMat = rotateQuat.toRotationMatrix();
Environment::shipMatrix = Environment::shipMatrix * rotateMat;
Environment::inverseShipMatrix = Environment::shipMatrix.inverse();
discreteAngle = -1;
discreteMag = 0.0f;
}
}
if (fabs(Environment::shipVelocity) > 0.01f)
else
{
Vector3f velocityDirection = { 0,0, -Environment::shipVelocity * delta / 1000.f };
Vector3f velocityDirectionAdjusted = Environment::shipMatrix * velocityDirection;
Environment::shipPosition = Environment::shipPosition + velocityDirectionAdjusted;
discreteAngle = -1;
discreteMag = 0.0f;
}
if (discreteAngle != Environment::shipState.discreteAngle || discreteMag != Environment::shipState.discreteMag) {
Environment::shipState.discreteAngle = discreteAngle;
Environment::shipState.discreteMag = discreteMag;
std::string msg = "UPD:" + std::to_string(now_ms) + ":" + Environment::shipState.formPingMessageContent();
networkClient->Send(msg);
std::cout << "Sending: " << msg << std::endl;
}
Environment::shipState.simulate_physics(delta);
Environment::inverseShipMatrix = Environment::shipState.rotation.inverse();
for (auto& p : projectiles) {
if (p && p->isActive()) {
p->update(static_cast<float>(delta), renderer);
@ -669,7 +720,7 @@ namespace ZL
for (const auto& p : projectiles) {
if (p && p->isActive()) {
Vector3f worldPos = p->getPosition();
Vector3f rel = worldPos - Environment::shipPosition;
Vector3f rel = worldPos - Environment::shipState.position;
Vector3f camPos = Environment::inverseShipMatrix * rel;
projCameraPoints.push_back(camPos);
}
@ -695,22 +746,31 @@ namespace ZL
projectileEmitter.update(static_cast<float>(delta));
explosionEmitter.update(static_cast<float>(delta));
if (showExplosion) {
uint64_t now = SDL_GetTicks64();
if (lastExplosionTime != 0 && now - lastExplosionTime >= explosionDurationMs) {
showExplosion = false;
explosionEmitter.setEmissionPoints(std::vector<Vector3f>());
explosionEmitter.setUseWorldSpace(false);
}
}
if (shipAlive) {
float distToSurface = planetObject.distanceToPlanetSurface(Environment::shipPosition);
float distToSurface = planetObject.distanceToPlanetSurface(Environment::shipState.position);
if (distToSurface <= 0.0f) {
Vector3f localForward = { 0,0,-1 };
Vector3f worldForward = (Environment::shipMatrix * localForward).normalized();
const float backDistance = 400.0f;
Environment::shipPosition = Environment::shipPosition - worldForward * backDistance;
Vector3f dir = (Environment::shipState.position - PlanetData::PLANET_CENTER_OFFSET).normalized();
Vector3f collisionPoint = PlanetData::PLANET_CENTER_OFFSET + dir * PlanetData::PLANET_RADIUS;
Environment::shipState.position = PlanetData::PLANET_CENTER_OFFSET + dir * (PlanetData::PLANET_RADIUS + shipCollisionRadius + 0.1f);
shipAlive = false;
gameOver = true;
Environment::shipVelocity = 0.0f;
Environment::shipState.velocity = 0.0f;
showExplosion = true;
explosionEmitter.setUseWorldSpace(false);
explosionEmitter.setEmissionPoints(std::vector<Vector3f>{ Vector3f{ 0.0f,0.0f,0.0f } });
explosionEmitter.setUseWorldSpace(true);
explosionEmitter.setEmissionPoints(std::vector<Vector3f>{ collisionPoint });
explosionEmitter.emit();
lastExplosionTime = SDL_GetTicks64();
std::cerr << "GAME OVER: collision with planet (moved back and exploded)\n";
@ -722,8 +782,116 @@ namespace ZL
this->uiGameOverShown = false;
this->showExplosion = false;
this->explosionEmitter.setEmissionPoints(std::vector<Vector3f>());
Environment::shipPosition = Vector3f{ 0, 0, 45000.f };
Environment::shipVelocity = 0.0f;
Environment::shipState.position = Vector3f{ 0, 0, 45000.f };
Environment::shipState.velocity = 0.0f;
Environment::shipState.rotation = Eigen::Matrix3f::Identity();
Environment::inverseShipMatrix = Eigen::Matrix3f::Identity();
Environment::zoom = DEFAULT_ZOOM;
Environment::tapDownHold = false;
uiManager.popMenu();
std::cerr << "Game restarted\n";
});
uiManager.setButtonCallback("gameOverExitButton", [this](const std::string& name) {
Environment::exitGameLoop = true;
});
uiGameOverShown = true;
}
else {
std::cerr << "Failed to load game_over.json\n";
}
}
}
else {
bool stoneCollided = false;
int collidedTriIdx = -1;
Vector3f collidedStonePos = Vector3f{ 0.0f, 0.0f, 0.0f };
float collidedStoneRadius = 0.0f;
for (int triIdx : planetObject.triangleIndicesToDraw) {
if (triIdx < 0 || triIdx >= static_cast<int>(planetObject.planetStones.allInstances.size()))
continue;
if (planetObject.planetStones.statuses.size() <= static_cast<size_t>(triIdx))
continue;
if (planetObject.planetStones.statuses[triIdx] != ChunkStatus::Live)
continue;
const auto& instances = planetObject.planetStones.allInstances[triIdx];
for (const auto& inst : instances) {
Vector3f stoneWorld = inst.position;
Vector3f diff = Environment::shipState.position - stoneWorld;
float maxScale = (std::max)({ inst.scale(0), inst.scale(1), inst.scale(2) });
float stoneRadius = StoneParams::BASE_SCALE * maxScale * 0.9f;
float thresh = shipCollisionRadius + stoneRadius;
if (diff.squaredNorm() <= thresh * thresh) {
stoneCollided = true;
collidedTriIdx = triIdx;
collidedStonePos = stoneWorld;
collidedStoneRadius = stoneRadius;
break;
}
}
if (stoneCollided) break;
}
if (stoneCollided) {
Vector3f away = (Environment::shipState.position - collidedStonePos);
if (away.squaredNorm() <= 1e-6f) {
away = Vector3f{ 0.0f, 1.0f, 0.0f };
}
away.normalize();
Environment::shipState.position = collidedStonePos + away * (collidedStoneRadius + shipCollisionRadius + 0.1f);
shipAlive = false;
gameOver = true;
Environment::shipState.velocity = 0.0f;
showExplosion = true;
explosionEmitter.setUseWorldSpace(true);
explosionEmitter.setEmissionPoints(std::vector<Vector3f>{ collidedStonePos });
explosionEmitter.emit();
lastExplosionTime = SDL_GetTicks64();
std::cerr << "GAME OVER: collision with stone on triangle " << collidedTriIdx << std::endl;
if (collidedTriIdx >= 0 && collidedTriIdx < static_cast<int>(planetObject.stonesToRender.size())) {
planetObject.stonesToRender[collidedTriIdx].data.PositionData.clear();
planetObject.stonesToRender[collidedTriIdx].vao.reset();
planetObject.stonesToRender[collidedTriIdx].positionVBO.reset();
planetObject.stonesToRender[collidedTriIdx].normalVBO.reset();
planetObject.stonesToRender[collidedTriIdx].tangentVBO.reset();
planetObject.stonesToRender[collidedTriIdx].binormalVBO.reset();
planetObject.stonesToRender[collidedTriIdx].colorVBO.reset();
planetObject.stonesToRender[collidedTriIdx].texCoordVBO.reset();
}
if (collidedTriIdx >= 0 && collidedTriIdx < static_cast<int>(planetObject.planetStones.statuses.size())) {
planetObject.planetStones.statuses[collidedTriIdx] = ChunkStatus::Empty;
}
if (!uiGameOverShown) {
if (uiManager.pushMenuFromFile("resources/config/game_over.json", this->renderer, CONST_ZIP_FILE)) {
uiManager.setButtonCallback("restartButton", [this](const std::string& name) {
this->shipAlive = true;
this->gameOver = false;
this->uiGameOverShown = false;
this->showExplosion = false;
this->explosionEmitter.setEmissionPoints(std::vector<Vector3f>());
Environment::shipState.position = Vector3f{ 0, 0, 45000.f };
Environment::shipState.velocity = 0.0f;
Environment::shipState.rotation = Eigen::Matrix3f::Identity();
Environment::inverseShipMatrix = Eigen::Matrix3f::Identity();
Environment::zoom = DEFAULT_ZOOM;
Environment::tapDownHold = false;
uiManager.popMenu();
std::cerr << "Game restarted\n";
});
@ -740,11 +908,12 @@ namespace ZL
}
}
}
}
for (int i = 0; i < boxCoordsArr.size(); ++i) {
if (!boxAlive[i]) continue;
Vector3f boxWorld = boxCoordsArr[i].pos + Vector3f{ 0.0f, 0.0f, 45000.0f };
Vector3f diff = Environment::shipPosition - boxWorld;
Vector3f diff = Environment::shipState.position - boxWorld;
float thresh = shipCollisionRadius + boxCollisionRadius;
if (diff.squaredNorm() <= thresh * thresh) {
boxAlive[i] = false;
@ -755,17 +924,48 @@ namespace ZL
boxRenderArr[i].texCoordVBO.reset();
showExplosion = true;
Vector3f rel = boxWorld - Environment::shipPosition;
Vector3f rel = boxWorld - Environment::shipState.position;
Vector3f camPos = Environment::inverseShipMatrix * rel;
explosionEmitter.setUseWorldSpace(true);
explosionEmitter.setEmissionPoints(std::vector<Vector3f>{ boxWorld });
explosionEmitter.emit();
lastExplosionTime = SDL_GetTicks64();
std::cerr << "Box destroyed at index " << i << std::endl;
}
}
const float projectileHitRadius = 1.5f;
for (auto& p : projectiles) {
if (!p || !p->isActive()) continue;
Vector3f ppos = p->getPosition();
Vector3f projInBoxSpace = Environment::inverseShipMatrix * (ppos - Environment::shipState.position);
for (int i = 0; i < boxCoordsArr.size(); ++i) {
if (!boxAlive[i]) continue;
Vector3f boxWorld = boxCoordsArr[i].pos + Vector3f{ 0.0f, 6.0f, 45000.0f };
Vector3f dd = ppos - boxWorld;
float thresh = boxCollisionRadius + projectileHitRadius;
if (dd.squaredNorm() <= thresh * thresh) {
boxAlive[i] = false;
boxRenderArr[i].data.PositionData.clear();
boxRenderArr[i].vao.reset();
boxRenderArr[i].positionVBO.reset();
boxRenderArr[i].texCoordVBO.reset();
showExplosion = true;
explosionEmitter.setUseWorldSpace(true);
explosionEmitter.setEmissionPoints(std::vector<Vector3f>{ boxWorld });
explosionEmitter.emit();
lastExplosionTime = SDL_GetTicks64();
p->deactivate();
std::cerr << "Box destroyed by projectile at index " << i << std::endl;
break;
}
}
}
uiManager.update(static_cast<float>(delta));
//#endif
lastTickCount = newTickCount;
}
}
@ -781,11 +981,11 @@ namespace ZL
const float size = 0.5f;
Vector3f localForward = { 0,0,-1 };
Vector3f worldForward = (Environment::shipMatrix * localForward).normalized();
Vector3f worldForward = (Environment::shipState.rotation * localForward).normalized();
for (const auto& lo : localOffsets) {
Vector3f worldPos = Environment::shipPosition + Environment::shipMatrix * lo;
Vector3f worldVel = worldForward * (projectileSpeed + Environment::shipVelocity);
Vector3f worldPos = Environment::shipState.position + Environment::shipState.rotation * lo;
Vector3f worldVel = worldForward * (projectileSpeed + Environment::shipState.velocity);
for (auto& p : projectiles) {
if (!p->isActive()) {
@ -844,31 +1044,6 @@ namespace ZL
if (event.type == SDL_MOUSEBUTTONDOWN) {
int mx = event.button.x;
int my = event.button.y;
uiManager.onMouseDown(mx, my);
bool uiHandled = false;
for (const auto& button : uiManager.findButton("") ? std::vector<std::shared_ptr<UiButton>>{} : std::vector<std::shared_ptr<UiButton>>{}) {
(void)button;
}
auto pressedSlider = [&]() -> std::shared_ptr<UiSlider> {
for (const auto& slider : uiManager.findSlider("") ? std::vector<std::shared_ptr<UiSlider>>{} : std::vector<std::shared_ptr<UiSlider>>{}) {
(void)slider;
}
return nullptr;
}();
if (!uiManager.isUiInteraction()) {
Environment::tapDownHold = true;
Environment::tapDownStartPos(0) = mx;
Environment::tapDownStartPos(1) = my;
Environment::tapDownCurrentPos(0) = mx;
Environment::tapDownCurrentPos(1) = my;
}
handleDown(mx, my);
}
if (event.type == SDL_MOUSEBUTTONUP) {
@ -884,6 +1059,7 @@ namespace ZL
handleMotion(mx, my);
}
/*
if (event.type == SDL_MOUSEWHEEL) {
static const float zoomstep = 2.0f;
if (event.wheel.y > 0) {
@ -900,27 +1076,14 @@ namespace ZL
{
if (event.key.keysym.sym == SDLK_i)
{
Environment::shipVelocity += 500.f;
}
if (event.key.keysym.sym == SDLK_k)
{
Environment::shipVelocity -= 500.f;
}
if (event.key.keysym.sym == SDLK_o)
{
Environment::shipVelocity += 50.f;
//x = x + 2.0;
}
if (event.key.keysym.sym == SDLK_l)
{
Environment::shipVelocity -= 50.f;
//x = x - 2.0;
}
}
}*/
#endif
}
render();
mainThreadHandler.processMainThreadTasks();
networkClient->Poll();
}
void Game::handleDown(int mx, int my)
@ -953,6 +1116,7 @@ namespace ZL
Environment::tapDownCurrentPos(1) = my;
}
}
void Game::handleUp(int mx, int my)
{
int uiX = mx;
@ -978,5 +1142,28 @@ namespace ZL
}
}
/*
std::string Game::formPingMessageContent()
{
Eigen::Quaternionf q(Environment::shipMatrix);
std::string pingMsg = std::to_string(Environment::shipPosition.x()) + ":"
+ std::to_string(Environment::shipPosition.y()) + ":"
+ std::to_string(Environment::shipPosition.z()) + ":"
+ std::to_string(q.w()) + ":"
+ std::to_string(q.x()) + ":"
+ std::to_string(q.y()) + ":"
+ std::to_string(q.z()) + ":"
+ std::to_string(Environment::currentAngularVelocity.x()) + ":"
+ std::to_string(Environment::currentAngularVelocity.y()) + ":"
+ std::to_string(Environment::currentAngularVelocity.z()) + ":"
+ std::to_string(Environment::shipVelocity) + ":"
+ std::to_string(Environment::shipSelectedVelocity) + ":"
+ std::to_string(Environment::lastSentMagnitude) + ":" // Используем те же static переменные из блока ROT
+ std::to_string(Environment::lastSentAngle);
return pingMsg;
}*/
} // namespace ZL

View File

@ -8,6 +8,7 @@
#include "UiManager.h"
#include "Projectile.h"
#include "utils/TaskManager.h"
#include "network/NetworkInterface.h"
#include <queue>
namespace ZL {
@ -34,6 +35,8 @@ namespace ZL {
Renderer renderer;
TaskManager taskManager;
MainThreadHandler mainThreadHandler;
std::unique_ptr<INetworkClient> networkClient;
private:
void processTickCount();
void drawScene();
@ -41,7 +44,7 @@ namespace ZL {
void drawShip();
void drawBoxes();
void drawUI();
void drawRemoteShips();
void fireProjectiles();
void handleDown(int mx, int my);
@ -59,6 +62,9 @@ namespace ZL {
std::vector<BoxCoords> boxCoordsArr;
std::vector<VertexRenderStruct> boxRenderArr;
std::unordered_map<int, ClientStateInterval> latestRemotePlayers;
float newShipVelocity = 0;
static const size_t CONST_TIMER_INTERVAL = 10;
static const size_t CONST_MAX_TIME_INTERVAL = 1000;
@ -91,10 +97,12 @@ namespace ZL {
bool shipAlive = true;
bool gameOver = false;
std::vector<bool> boxAlive;
float shipCollisionRadius = 3.5f;
float shipCollisionRadius = 15.0f;
float boxCollisionRadius = 2.0f;
bool uiGameOverShown = false;
bool showExplosion = false;
uint64_t lastExplosionTime = 0;
const uint64_t explosionDurationMs = 500;
};

View File

@ -18,7 +18,7 @@ namespace ZL {
bool isActive() const { return active; }
Vector3f getPosition() const { return pos; }
void deactivate() { active = false; }
private:
Vector3f pos;
Vector3f vel;

View File

@ -75,7 +75,7 @@ namespace ZL {
if (particle.active) {
Vector3f posCam;
if (useWorldSpace) {
Vector3f rel = particle.position - Environment::shipPosition;
Vector3f rel = particle.position - Environment::shipState.position;
posCam = Environment::inverseShipMatrix * rel;
}
else {
@ -94,7 +94,7 @@ namespace ZL {
const auto& particle = *particlePtr;
Vector3f posCam;
if (useWorldSpace) {
Vector3f rel = particle.position - Environment::shipPosition;
Vector3f rel = particle.position - Environment::shipState.position;
posCam = Environment::inverseShipMatrix * rel;
}
else {

224
src/network/ClientState.cpp Normal file
View File

@ -0,0 +1,224 @@
#include "ClientState.h"
void ClientState::simulate_physics(size_t delta) {
if (discreteMag > 0.01f)
{
float rad = static_cast<float>(discreteAngle) * static_cast<float>(M_PI) / 180.0f;
// Целевая угловая скорость (дискретная сила определяет модуль вектора)
// Вектор {cos, sin, 0} дает нам направление отклонения джойстика
Eigen::Vector3f targetAngularVelDir(sinf(rad), cosf(rad), 0.0f);
Eigen::Vector3f targetAngularVelocity = targetAngularVelDir * discreteMag;
Eigen::Vector3f diffVel = targetAngularVelocity - currentAngularVelocity;
float diffLen = diffVel.norm();
if (diffLen > 0.0001f) {
// Вычисляем, на сколько мы можем изменить скорость в этом кадре
float maxChange = ANGULAR_ACCEL * static_cast<float>(delta);
if (diffLen <= maxChange) {
// Если до цели осталось меньше, чем шаг ускорения — просто прыгаем в цель
currentAngularVelocity = targetAngularVelocity;
}
else {
// Линейно двигаемся в сторону целевого вектора
currentAngularVelocity += (diffVel / diffLen) * maxChange;
}
}
}
else
{
float currentSpeed = currentAngularVelocity.norm();
if (currentSpeed > 0.0001f) {
float drop = ANGULAR_ACCEL * static_cast<float>(delta);
if (currentSpeed <= drop) {
currentAngularVelocity = Eigen::Vector3f::Zero();
}
else {
// Уменьшаем модуль вектора, сохраняя направление
currentAngularVelocity -= (currentAngularVelocity / currentSpeed) * drop;
}
}
}
float speedScale = currentAngularVelocity.norm();
if (speedScale > 0.0001f) {
// Коэффициент чувствительности вращения
float deltaAlpha = speedScale * static_cast<float>(delta) * ROTATION_SENSITIVITY;
Eigen::Vector3f axis = currentAngularVelocity.normalized();
Eigen::Quaternionf rotateQuat(Eigen::AngleAxisf(deltaAlpha, axis));
rotation = rotation * rotateQuat.toRotationMatrix();
}
// 4. Линейное изменение линейной скорости
float shipDesiredVelocity = selectedVelocity * 100.f;
if (velocity < shipDesiredVelocity)
{
velocity += delta * SHIP_ACCEL;
if (velocity > shipDesiredVelocity)
{
velocity = shipDesiredVelocity;
}
}
else if (velocity > shipDesiredVelocity)
{
velocity -= delta * SHIP_ACCEL;
if (velocity < shipDesiredVelocity)
{
velocity = shipDesiredVelocity;
}
}
if (fabs(velocity) > 0.01f)
{
Eigen::Vector3f velocityDirection = { 0,0, -velocity * delta / 1000.f };
Eigen::Vector3f velocityDirectionAdjusted = rotation * velocityDirection;
position = position + velocityDirectionAdjusted;
}
}
void ClientState::apply_lag_compensation(std::chrono::system_clock::time_point nowTime) {
// 2. Вычисляем задержку
long long deltaMs = 0;
if (nowTime > lastUpdateServerTime) {
deltaMs = std::chrono::duration_cast<std::chrono::milliseconds>(nowTime - lastUpdateServerTime).count();
}
// 3. Защита от слишком больших скачков (Clamp)
// Если лаг более 500мс, ограничиваем его, чтобы избежать резких рывков
long long final_lag_ms = deltaMs;//min(deltaMs, 500ll);
if (final_lag_ms > 0) {
// Доматываем симуляцию на величину задержки
// Мы предполагаем, что за это время параметры управления не менялись
simulate_physics(final_lag_ms);
}
}
void ClientState::handle_full_sync(const std::vector<std::string>& parts, int startFrom) {
// Позиция
position = { std::stof(parts[startFrom]), std::stof(parts[startFrom + 1]), std::stof(parts[startFrom + 2]) };
Eigen::Quaternionf q(
std::stof(parts[startFrom + 3]),
std::stof(parts[startFrom + 4]),
std::stof(parts[startFrom + 5]),
std::stof(parts[startFrom + 6]));
rotation = q.toRotationMatrix();
currentAngularVelocity = Eigen::Vector3f{
std::stof(parts[startFrom + 7]),
std::stof(parts[startFrom + 8]),
std::stof(parts[startFrom + 9]) };
velocity = std::stof(parts[startFrom + 10]);
selectedVelocity = std::stoi(parts[startFrom + 11]);
discreteMag = std::stof(parts[startFrom + 12]);
discreteAngle = std::stoi(parts[startFrom + 13]);
}
std::string ClientState::formPingMessageContent()
{
Eigen::Quaternionf q(rotation);
std::string pingMsg = std::to_string(position.x()) + ":"
+ std::to_string(position.y()) + ":"
+ std::to_string(position.z()) + ":"
+ std::to_string(q.w()) + ":"
+ std::to_string(q.x()) + ":"
+ std::to_string(q.y()) + ":"
+ std::to_string(q.z()) + ":"
+ std::to_string(currentAngularVelocity.x()) + ":"
+ std::to_string(currentAngularVelocity.y()) + ":"
+ std::to_string(currentAngularVelocity.z()) + ":"
+ std::to_string(velocity) + ":"
+ std::to_string(selectedVelocity) + ":"
+ std::to_string(discreteMag) + ":" // Используем те же static переменные из блока ROT
+ std::to_string(discreteAngle);
return pingMsg;
}
void ClientStateInterval::add_state(const ClientState& state)
{
auto nowTime = std::chrono::system_clock::now();
if (timedStates.size() > 0 && timedStates[timedStates.size() - 1].lastUpdateServerTime == state.lastUpdateServerTime)
{
timedStates[timedStates.size() - 1] = state;
}
else
{
timedStates.push_back(state);
}
auto cutoff_time = nowTime - std::chrono::milliseconds(CUTOFF_TIME);
while (timedStates.size() > 0 && timedStates[0].lastUpdateServerTime < cutoff_time)
{
timedStates.erase(timedStates.begin());
}
}
bool ClientStateInterval::canFetchClientStateAtTime(std::chrono::system_clock::time_point targetTime) const
{
if (timedStates.empty())
{
return false;
}
if (timedStates[0].lastUpdateServerTime > targetTime)
{
return false;
}
return true;
}
ClientState ClientStateInterval::fetchClientStateAtTime(std::chrono::system_clock::time_point targetTime) const {
ClientState closestState;
if (timedStates.empty())
{
throw std::runtime_error("No timed client states available");
return closestState;
}
if (timedStates[0].lastUpdateServerTime > targetTime)
{
throw std::runtime_error("Found time but it is in future");
return closestState;
}
if (timedStates.size() == 1)
{
closestState = timedStates[0];
closestState.apply_lag_compensation(targetTime);
return closestState;
}
for (size_t i = 0; i < timedStates.size() - 1; ++i)
{
const auto& earlierState = timedStates[i];
const auto& laterState = timedStates[i + 1];
if (earlierState.lastUpdateServerTime <= targetTime && laterState.lastUpdateServerTime >= targetTime)
{
closestState = earlierState;
closestState.apply_lag_compensation(targetTime);
return closestState;
}
}
closestState = timedStates[timedStates.size() - 1];
closestState.apply_lag_compensation(targetTime);
return closestState;
}

52
src/network/ClientState.h Normal file
View File

@ -0,0 +1,52 @@
#pragma once
#include <chrono>
#include <Eigen/Dense>
#define _USE_MATH_DEFINES
#include <math.h>
#include <iostream>
using std::min;
using std::max;
constexpr float ANGULAR_ACCEL = 0.005f * 1000.0f;
constexpr float SHIP_ACCEL = 1.0f * 1000.0f;
constexpr float ROTATION_SENSITIVITY = 0.002f;
constexpr long long SERVER_DELAY = 0; //ms
constexpr long long CLIENT_DELAY = 200; //ms
constexpr long long CUTOFF_TIME = 5000; //ms
struct ClientState {
int id = 0;
Eigen::Vector3f position = { 0, 0, 45000.0f };
Eigen::Matrix3f rotation = Eigen::Matrix3f::Identity();
Eigen::Vector3f currentAngularVelocity = Eigen::Vector3f::Zero();
float velocity = 0.0f;
int selectedVelocity = 0;
float discreteMag = 0;
int discreteAngle = -1;
// Для расчета лага
std::chrono::system_clock::time_point lastUpdateServerTime;
void simulate_physics(size_t delta);
void apply_lag_compensation(std::chrono::system_clock::time_point nowTime);
void handle_full_sync(const std::vector<std::string>& parts, int startFrom);
std::string formPingMessageContent();
};
struct ClientStateInterval
{
std::vector<ClientState> timedStates;
void add_state(const ClientState& state);
bool canFetchClientStateAtTime(std::chrono::system_clock::time_point targetTime) const;
ClientState fetchClientStateAtTime(std::chrono::system_clock::time_point targetTime) const;
};

View File

@ -0,0 +1,18 @@
#include "LocalClient.h"
#include <iostream>
namespace ZL {
void LocalClient::Connect(const std::string& host, uint16_t port) {
}
void LocalClient::Poll() {
}
void LocalClient::Send(const std::string& message) {
}
}

25
src/network/LocalClient.h Normal file
View File

@ -0,0 +1,25 @@
#pragma once
// WebSocketClient.h
#include "NetworkInterface.h"
#include <queue>
namespace ZL {
class LocalClient : public INetworkClient {
private:
std::queue<std::string> messageQueue;
public:
void Connect(const std::string& host, uint16_t port) override;
void Poll() override;
void Send(const std::string& message) override;
bool IsConnected() const override { return true; }
int GetClientId() const { return 1; }
std::unordered_map<int, ClientStateInterval> getRemotePlayers() override {
return std::unordered_map<int, ClientStateInterval>();
}
};
}

View File

@ -0,0 +1,19 @@
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include "ClientState.h"
// NetworkInterface.h - »нтерфейс дл¤ разных типов соединений
namespace ZL {
class INetworkClient {
public:
virtual ~INetworkClient() = default;
virtual void Connect(const std::string& host, uint16_t port) = 0;
virtual void Send(const std::string& message) = 0;
virtual bool IsConnected() const = 0;
virtual void Poll() = 0; // ƒл¤ обработки вход¤щих пакетов
virtual std::unordered_map<int, ClientStateInterval> getRemotePlayers() = 0;
};
}

View File

@ -0,0 +1,175 @@
#ifdef NETWORK
#include "WebSocketClient.h"
#include <iostream>
#include <SDL2/SDL.h>
// Вспомогательный split
std::vector<std::string> split(const std::string& s, char delimiter) {
std::vector<std::string> tokens;
std::string token;
std::istringstream tokenStream(s);
while (std::getline(tokenStream, token, delimiter)) {
tokens.push_back(token);
}
return tokens;
}
namespace ZL {
void WebSocketClient::Connect(const std::string& host, uint16_t port) {
try {
boost::asio::ip::tcp::resolver resolver(ioc_);
auto const results = resolver.resolve(host, std::to_string(port));
ws_ = std::make_unique<boost::beast::websocket::stream<boost::beast::tcp_stream>>(ioc_);
// Выполняем синхронный коннект и handshake для простоты старта
boost::beast::get_lowest_layer(*ws_).connect(results);
ws_->handshake(host, "/");
connected = true;
// Запускаем асинхронное чтение в пуле потоков TaskManager
startAsyncRead();
}
catch (std::exception& e) {
std::cerr << "Network Error: " << e.what() << std::endl;
}
}
void WebSocketClient::startAsyncRead() {
ws_->async_read(buffer_, [this](boost::beast::error_code ec, std::size_t bytes) {
if (!ec) {
std::string msg = boost::beast::buffers_to_string(buffer_.data());
buffer_.consume(bytes);
processIncomingMessage(msg);
startAsyncRead();
}
else {
connected = false;
}
});
}
void WebSocketClient::processIncomingMessage(const std::string& msg) {
// Логика парсинга...
if (msg.rfind("ID:", 0) == 0) {
clientId = std::stoi(msg.substr(3));
}
// Безопасно кладем в очередь для главного потока
std::lock_guard<std::mutex> lock(queueMutex);
messageQueue.push(msg);
}
void WebSocketClient::Poll() {
std::lock_guard<std::mutex> lock(queueMutex);
while (!messageQueue.empty()) {
auto nowTime = std::chrono::system_clock::now();
//Apply server delay:
nowTime -= std::chrono::milliseconds(CLIENT_DELAY);
auto now_ms = std::chrono::duration_cast<std::chrono::milliseconds>(
nowTime.time_since_epoch()
).count();
std::string msg = messageQueue.front();
messageQueue.pop();
if (msg.rfind("EVENT:", 0) == 0) {
auto parts = split(msg, ':');
if (parts.size() < 5) continue; // EVENT:ID:TYPE:TIME:DATA...
int remoteId = std::stoi(parts[1]);
std::string subType = parts[2];
uint64_t sentTime = std::stoull(parts[3]);
ClientState remoteState;
remoteState.id = remoteId;
std::chrono::system_clock::time_point uptime_timepoint{ std::chrono::duration_cast<std::chrono::system_clock::time_point::duration>(std::chrono::milliseconds(sentTime)) };
remoteState.lastUpdateServerTime = uptime_timepoint;
if (subType == "UPD") {
int startFrom = 4;
remoteState.position = { std::stof(parts[startFrom]), std::stof(parts[startFrom + 1]), std::stof(parts[startFrom + 2]) };
Eigen::Quaternionf q(
std::stof(parts[startFrom + 3]),
std::stof(parts[startFrom + 4]),
std::stof(parts[startFrom + 5]),
std::stof(parts[startFrom + 6]));
remoteState.rotation = q.toRotationMatrix();
remoteState.currentAngularVelocity = Eigen::Vector3f{
std::stof(parts[startFrom + 7]),
std::stof(parts[startFrom + 8]),
std::stof(parts[startFrom + 9]) };
remoteState.velocity = std::stof(parts[startFrom + 10]);
remoteState.selectedVelocity = std::stoi(parts[startFrom + 11]);
remoteState.discreteMag = std::stof(parts[startFrom + 12]);
remoteState.discreteAngle = std::stoi(parts[startFrom + 13]);
}
else
{
throw std::runtime_error("Unknown EVENT subtype: " + subType);
}
{
std::lock_guard<std::mutex> pLock(playersMutex);
auto& rp = remotePlayers[remoteId];
rp.add_state(remoteState);
}
}
}
}
void WebSocketClient::Send(const std::string& message) {
if (!connected) return;
auto ss = std::make_shared<std::string>(message);
std::lock_guard<std::mutex> lock(writeMutex_);
writeQueue_.push(ss);
// Если сейчас ничего не записывается, инициируем первую запись
if (!isWriting_) {
doWrite();
}
}
void WebSocketClient::doWrite() {
// Эта функция всегда вызывается под мьютексом или из колбэка
if (writeQueue_.empty()) {
isWriting_ = false;
return;
}
isWriting_ = true;
auto message = writeQueue_.front();
// Захватываем self (shared_from_this), чтобы объект не удалился во время записи
ws_->async_write(
boost::asio::buffer(*message),
[this, message](boost::beast::error_code ec, std::size_t) {
if (ec) {
connected = false;
return;
}
std::lock_guard<std::mutex> lock(writeMutex_);
writeQueue_.pop(); // Удаляем отправленное сообщение
doWrite(); // Проверяем следующее
}
);
}
}
#endif

View File

@ -0,0 +1,59 @@
#pragma once
#ifdef NETWORK
// WebSocketClient.h
#include "NetworkInterface.h"
#include <queue>
#include <boost/beast/core.hpp>
#include <boost/beast/websocket.hpp>
#include <boost/asio/connect.hpp>
#include <boost/asio/ip/tcp.hpp>
namespace ZL {
class WebSocketClient : public INetworkClient {
private:
// Переиспользуем io_context из TaskManager
boost::asio::io_context& ioc_;
// Объекты переехали в члены класса
std::unique_ptr<boost::beast::websocket::stream<boost::beast::tcp_stream>> ws_;
boost::beast::flat_buffer buffer_;
std::queue<std::string> messageQueue;
std::mutex queueMutex; // Защита для messageQueue
std::queue<std::shared_ptr<std::string>> writeQueue_;
bool isWriting_ = false;
std::mutex writeMutex_; // Отдельный мьютекс для очереди записи
bool connected = false;
int clientId = -1;
std::unordered_map<int, ClientStateInterval> remotePlayers;
std::mutex playersMutex;
void startAsyncRead();
void processIncomingMessage(const std::string& msg);
public:
explicit WebSocketClient(boost::asio::io_context& ioc) : ioc_(ioc) {}
void Connect(const std::string& host, uint16_t port) override;
void Poll() override;
void Send(const std::string& message) override;
void doWrite();
bool IsConnected() const override { return connected; }
int GetClientId() const { return clientId; }
std::unordered_map<int, ClientStateInterval> getRemotePlayers() override {
std::lock_guard<std::mutex> lock(playersMutex);
return remotePlayers;
}
};
}
#endif

View File

@ -1,4 +1,4 @@
#include "PlanetData.h"
#include "PlanetData.h"
#include <iostream>
#include <numeric>
#include <cmath>
@ -10,13 +10,13 @@ namespace ZL {
const float PlanetData::PLANET_RADIUS = 20000.f;
const Vector3f PlanetData::PLANET_CENTER_OFFSET = Vector3f{ 0.f, 0.f, 0.0f };
// --- Константы диапазонов (перенесены из PlanetObject.cpp) ---
// --- Константы диапазонов (перенесены из PlanetObject.cpp) ---
VertexID generateEdgeID(const VertexID& id1, const VertexID& id2) {
return id1 < id2 ? id1 + "_" + id2 : id2 + "_" + id1;
}
// Вспомогательная функция для проекции (локальная)
// Вспомогательная функция для проекции (локальная)
static Vector3f projectPointOnPlane(const Vector3f& P, const Vector3f& A, const Vector3f& B, const Vector3f& C) {
Vector3f AB = B + A * (-1.0f);
Vector3f AC = C + A * (-1.0f);
@ -138,18 +138,18 @@ namespace ZL {
std::vector<int> PlanetData::getBestTriangleUnderCamera(const Vector3f& viewerPosition) {
const LodLevel& finalLod = planetMeshLods[currentLod]; // Работаем с текущим активным LOD
const LodLevel& finalLod = planetMeshLods[currentLod]; // Работаем с текущим активным LOD
Vector3f targetDir = (viewerPosition - PLANET_CENTER_OFFSET).normalized();
int bestTriangle = -1;
float maxDot = -1.0f;
// Шаг 1: Быстрый поиск ближайшего треугольника по "центроиду"
// Чтобы не проверять все, можно проверять каждый N-й или использовать
// предварительно вычисленные центры для LOD0, чтобы сузить круг.
// Но для надежности пройдемся по массиву (для 5-6 подразделений это быстро)
// Шаг 1: Быстрый поиск ближайшего треугольника по "центроиду"
// Чтобы не проверять все, можно проверять каждый N-й или использовать
// предварительно вычисленные центры для LOD0, чтобы сузить круг.
// Но для надежности пройдемся по массиву (для 5-6 подразделений это быстро)
for (int i = 0; i < (int)finalLod.triangles.size(); ++i) {
// Вычисляем примерное направление на треугольник
// Вычисляем примерное направление на треугольник
Vector3f triDir = (finalLod.triangles[i].data[0] +
finalLod.triangles[i].data[1] +
finalLod.triangles[i].data[2]).normalized();
@ -172,22 +172,22 @@ namespace ZL {
float currentDist = shipLocal.norm();
Vector3f targetDir = shipLocal.normalized();
// Желаемый радиус покрытия на поверхности планеты (в метрах/единицах движка)
// Подбери это значение так, чтобы камни вокруг корабля всегда были видны.
// Желаемый радиус покрытия на поверхности планеты (в метрах/единицах движка)
// Подбери это значение так, чтобы камни вокруг корабля всегда были видны.
const float desiredCoverageRadius = 3000.0f;
// Вычисляем порог косинуса на основе желаемого радиуса и текущего расстояния.
// Чем мы дальше (currentDist больше), тем меньше должен быть угол отклонения
// от нормали, чтобы захватить ту же площадь.
// Вычисляем порог косинуса на основе желаемого радиуса и текущего расстояния.
// Чем мы дальше (currentDist больше), тем меньше должен быть угол отклонения
// от нормали, чтобы захватить ту же площадь.
float angle = atan2(desiredCoverageRadius, currentDist);
float searchThreshold = cos(angle);
// Ограничитель, чтобы не захватить всю планету или вообще ничего
// Ограничитель, чтобы не захватить всю планету или вообще ничего
searchThreshold = std::clamp(searchThreshold, 0.90f, 0.9999f);
std::vector<int> result;
for (int i = 0; i < (int)finalLod.triangles.size(); ++i) {
// Используем центроид (можно кэшировать в LodLevel для скорости)
// Используем центроид (можно кэшировать в LodLevel для скорости)
Vector3f triDir = (finalLod.triangles[i].data[0] +
finalLod.triangles[i].data[1] +
finalLod.triangles[i].data[2]).normalized();
@ -205,7 +205,7 @@ namespace ZL {
std::vector<Triangle> output;
for (const auto& t : input) {
// Вершины и их ID
// Вершины и их ID
const Vector3f& a = t.data[0];
const Vector3f& b = t.data[1];
const Vector3f& c = t.data[2];
@ -213,7 +213,7 @@ namespace ZL {
const VertexID& id_b = t.ids[1];
const VertexID& id_c = t.ids[2];
// 1. Вычисляем середины (координаты)
// 1. Вычисляем середины (координаты)
Vector3f m_ab = ((a + b) * 0.5f).normalized();
Vector3f m_bc = ((b + c) * 0.5f).normalized();
Vector3f m_ac = ((a + c) * 0.5f).normalized();
@ -226,12 +226,12 @@ namespace ZL {
Vector3f pm_bc = m_bc;
Vector3f pm_ac = m_ac;
// 2. Вычисляем ID новых вершин
// 2. Вычисляем ID новых вершин
VertexID id_mab = generateEdgeID(id_a, id_b);
VertexID id_mbc = generateEdgeID(id_b, id_c);
VertexID id_mac = generateEdgeID(id_a, id_c);
// 3. Формируем 4 новых треугольника
// 3. Формируем 4 новых треугольника
output.emplace_back(Triangle{ {a, pm_ab, pm_ac}, {id_a, id_mab, id_mac} }); // 0
output.emplace_back(Triangle{ {pm_ab, b, pm_bc}, {id_mab, id_b, id_mbc} }); // 1
output.emplace_back(Triangle{ {pm_ac, pm_bc, c}, {id_mac, id_mbc, id_c} }); // 2
@ -282,31 +282,31 @@ namespace ZL {
Vector2f(1.0f, 0.0f)
};
const Vector3f colorPinkish = { 1.0f, 0.8f, 0.82f }; // Слегка розоватый
const Vector3f colorYellowish = { 1.0f, 1.0f, 0.75f }; // Слегка желтоватый
const Vector3f colorPinkish = { 1.0f, 0.8f, 0.82f }; // Слегка розоватый
const Vector3f colorYellowish = { 1.0f, 1.0f, 0.75f }; // Слегка желтоватый
const float colorFrequency = 4.0f; // Масштаб пятен
const float colorFrequency = 4.0f; // Масштаб пятен
for (const auto& t : lod.triangles) {
// --- Вычисляем локальный базис треугольника (как в GetRotationForTriangle) ---
// --- Вычисляем локальный базис треугольника (как в GetRotationForTriangle) ---
Vector3f vA = t.data[0];
Vector3f vB = t.data[1];
Vector3f vC = t.data[2];
Vector3f x_axis = (vC - vB).normalized(); // Направление U
Vector3f x_axis = (vC - vB).normalized(); // Направление U
Vector3f edge1 = vB - vA;
Vector3f edge2 = vC - vA;
Vector3f z_axis = edge1.cross(edge2).normalized(); // Нормаль плоскости
Vector3f z_axis = edge1.cross(edge2).normalized(); // Нормаль плоскости
// Проверка направления нормали наружу (от центра планеты)
// Проверка направления нормали наружу (от центра планеты)
Vector3f centerToTri = (vA + vB + vC).normalized();
if (z_axis.dot(centerToTri) < 0) {
z_axis = z_axis * -1.0f;
}
Vector3f y_axis = z_axis.cross(x_axis).normalized(); // Направление V
Vector3f y_axis = z_axis.cross(x_axis).normalized(); // Направление V
for (int i = 0; i < 3; ++i) {
lod.vertexData.PositionData.push_back(t.data[i]);
@ -315,7 +315,7 @@ namespace ZL {
lod.vertexData.TangentData.push_back(x_axis);
lod.vertexData.BinormalData.push_back(y_axis);
// Используем один шум для выбора между розовым и желтым
// Используем один шум для выбора между розовым и желтым
Vector3f dir = t.data[i].normalized();
float blendFactor = colorPerlin.noise(
dir(0) * colorFrequency,
@ -323,10 +323,10 @@ namespace ZL {
dir(2) * colorFrequency
);
// Приводим шум из диапазона [-1, 1] в [0, 1]
// Приводим шум из диапазона [-1, 1] в [0, 1]
blendFactor = blendFactor * 0.5f + 0.5f;
// Линейная интерполяция между двумя цветами
// Линейная интерполяция между двумя цветами
Vector3f finalColor;
finalColor = colorPinkish + blendFactor * (colorYellowish - colorPinkish);
@ -339,17 +339,17 @@ namespace ZL {
LodLevel PlanetData::generateSphere(int subdivisions, float noiseCoeff) {
const float t = (1.0f + std::sqrt(5.0f)) / 2.0f;
// 12 базовых вершин икосаэдра
// 12 базовых вершин икосаэдра
std::vector<Vector3f> icosaVertices = {
{-1, t, 0}, { 1, t, 0}, {-1, -t, 0}, { 1, -t, 0},
{ 0, -1, t}, { 0, 1, t}, { 0, -1, -t}, { 0, 1, -t},
{ t, 0, -1}, { t, 0, 1}, {-t, 0, -1}, {-t, 0, 1}
};
// Нормализуем вершины
// Нормализуем вершины
for (auto& v : icosaVertices) v = v.normalized();
// 20 граней икосаэдра
// 20 граней икосаэдра
struct IndexedTri { int v1, v2, v3; };
std::vector<IndexedTri> faces = {
{0, 11, 5}, {0, 5, 1}, {0, 1, 7}, {0, 7, 10}, {0, 10, 11},
@ -365,7 +365,7 @@ namespace ZL {
tri.data[1] = icosaVertices[f.v2];
tri.data[2] = icosaVertices[f.v3];
// Генерируем ID для базовых вершин (можно использовать их координаты)
// Генерируем ID для базовых вершин (можно использовать их координаты)
for (int i = 0; i < 3; ++i) {
tri.ids[i] = std::to_string(tri.data[i](0)) + "_" +
std::to_string(tri.data[i](1)) + "_" +
@ -374,15 +374,15 @@ namespace ZL {
geometry.push_back(tri);
}
// 3. Разбиваем N раз
// 3. Разбиваем N раз
for (int i = 0; i < subdivisions; i++) {
geometry = subdivideTriangles(geometry, 0.0f); // Шум пока игнорируем
geometry = subdivideTriangles(geometry, 0.0f); // Шум пока игнорируем
}
// 4. Создаем LodLevel и заполняем топологию (v2tMap)
// 4. Создаем LodLevel и заполняем топологию (v2tMap)
LodLevel lodLevel = createLodLevel(geometry);
// Пересобираем v2tMap (она критична для релаксации)
// Пересобираем v2tMap (она критична для релаксации)
lodLevel.v2tMap.clear();
for (size_t i = 0; i < geometry.size(); ++i) {
for (int j = 0; j < 3; ++j) {
@ -390,12 +390,12 @@ namespace ZL {
}
}
// 5. Применяем итеративную релаксацию (Lloyd-like)
// 5-10 итераций достаточно для отличной сетки
// 5. Применяем итеративную релаксацию (Lloyd-like)
// 5-10 итераций достаточно для отличной сетки
applySphericalRelaxation(lodLevel, 8);
// 6. Накладываем шум и обновляем атрибуты
// ... (твой код наложения шума через Perlin)
// 6. Накладываем шум и обновляем атрибуты
// ... (твой код наложения шума через Perlin)
recalculateMeshAttributes(lodLevel);
return lodLevel;
@ -410,7 +410,7 @@ namespace ZL {
for (auto const& [vID, connectedTris] : lod.v2tMap) {
Vector3f centroid(0, 0, 0);
// Находим среднюю точку среди центров всех соседних треугольников
// Находим среднюю точку среди центров всех соседних треугольников
for (int triIdx : connectedTris) {
const auto& tri = lod.triangles[triIdx];
Vector3f faceCenter = (tri.data[0] + tri.data[1] + tri.data[2]) * (1.0f / 3.0f);
@ -419,11 +419,11 @@ namespace ZL {
centroid = centroid * (1.0f / (float)connectedTris.size());
// Проецируем обратно на единичную сферу
// Проецируем обратно на единичную сферу
newPositions[vID] = centroid.normalized();
}
// Синхронизируем данные в треугольниках
// Синхронизируем данные в треугольниках
for (auto& tri : lod.triangles) {
for (int i = 0; i < 3; ++i) {
tri.data[i] = newPositions[tri.ids[i]];

View File

@ -1,4 +1,4 @@
#pragma once
#pragma once
#include "utils/Perlin.h"
#include "render/Renderer.h"
@ -16,7 +16,7 @@ namespace ZL {
struct Vector3fComparator {
bool operator()(const Eigen::Vector3f& a, const Eigen::Vector3f& b) const {
// Лексикографическое сравнение (x, затем y, затем z)
// Лексикографическое сравнение (x, затем y, затем z)
if (a.x() != b.x()) return a.x() < b.x();
if (a.y() != b.y()) return a.y() < b.y();
return a.z() < b.z();
@ -87,11 +87,11 @@ namespace ZL {
std::array<LodLevel, MAX_LOD_LEVELS> planetMeshLods;
LodLevel planetAtmosphereLod;
int currentLod; // Логический текущий уровень детализации
int currentLod; // Логический текущий уровень детализации
//std::map<Vector3f, VertexID, Vector3fComparator> initialVertexMap;
// Внутренние методы генерации
// Внутренние методы генерации
std::vector<Triangle> subdivideTriangles(const std::vector<Triangle>& inputTriangles, float noiseCoeff);
LodLevel createLodLevel(const std::vector<Triangle>& triangles);
void recalculateMeshAttributes(LodLevel& lod);
@ -101,17 +101,17 @@ namespace ZL {
void init();
// Методы доступа к данным (для рендерера)
// Методы доступа к данным (для рендерера)
const LodLevel& getLodLevel(int level) const;
const LodLevel& getAtmosphereLod() const;
int getCurrentLodIndex() const;
int getMaxLodIndex() const;
// Логика
// Логика
std::pair<float, float> calculateZRange(float distanceToSurface);
float distanceToPlanetSurfaceFast(const Vector3f& viewerPosition);
// Возвращает индексы треугольников, видимых камерой
// Возвращает индексы треугольников, видимых камерой
std::vector<int> getBestTriangleUnderCamera(const Vector3f& viewerPosition);
std::vector<int> getTrianglesUnderCameraNew2(const Vector3f& viewerPosition);

View File

@ -101,15 +101,15 @@ namespace ZL {
// 1. Проверка порога движения (оптимизация из текущего кода)
float movementThreshold = 1.0f;
if ((Environment::shipPosition - lastUpdatePos).squaredNorm() < movementThreshold * movementThreshold
if ((Environment::shipState.position - lastUpdatePos).squaredNorm() < movementThreshold * movementThreshold
&& !triangleIndicesToDraw.empty()) {
//processMainThreadTasks(); // Все равно обрабатываем очередь OpenGL задач
return;
}
lastUpdatePos = Environment::shipPosition;
lastUpdatePos = Environment::shipState.position;
// 2. Получаем список видимых треугольников
auto newIndices = planetData.getTrianglesUnderCameraNew2(Environment::shipPosition);
auto newIndices = planetData.getTrianglesUnderCameraNew2(Environment::shipState.position);
std::sort(newIndices.begin(), newIndices.end());
// 3. Анализируем, что нужно загрузить
@ -305,7 +305,7 @@ namespace ZL {
renderer.EnableVertexAttribArray(vTexCoordName);
float dist = planetData.distanceToPlanetSurfaceFast(Environment::shipPosition);
float dist = planetData.distanceToPlanetSurfaceFast(Environment::shipState.position);
auto zRange = planetData.calculateZRange(dist);
const float currentZNear = zRange.first;
const float currentZFar = zRange.second;
@ -320,7 +320,7 @@ namespace ZL {
renderer.TranslateMatrix({ 0,0, -1.0f * Environment::zoom });
renderer.RotateMatrix(Environment::inverseShipMatrix);
renderer.TranslateMatrix(-Environment::shipPosition);
renderer.TranslateMatrix(-Environment::shipState.position);
const Matrix4f viewMatrix = renderer.GetCurrentModelViewMatrix();
@ -332,7 +332,7 @@ namespace ZL {
Matrix3f mr = GetRotationForTriangle(tr); // Та же матрица, что и при запекании
// Позиция камеры (корабля) в мире
renderer.RenderUniform3fv("uViewPos", Environment::shipPosition.data());
renderer.RenderUniform3fv("uViewPos", Environment::shipState.position.data());
//renderer.RenderUniform1f("uHeightScale", 0.08f);
renderer.RenderUniform1f("uHeightScale", 0.0f);
@ -345,7 +345,7 @@ namespace ZL {
renderer.RenderUniform3fv("uLightDirWorld", sunDirWorld.data());
// Направление от центра планеты к игроку для расчета дня/ночи
Vector3f playerDirWorld = Environment::shipPosition.normalized();
Vector3f playerDirWorld = Environment::shipState.position.normalized();
renderer.RenderUniform3fv("uPlayerDirWorld", playerDirWorld.data());
// Тот же фактор освещенности игрока
@ -394,7 +394,7 @@ namespace ZL {
renderer.EnableVertexAttribArray(vTexCoordName);
float dist = planetData.distanceToPlanetSurfaceFast(Environment::shipPosition);
float dist = planetData.distanceToPlanetSurfaceFast(Environment::shipState.position);
auto zRange = planetData.calculateZRange(dist);
const float currentZNear = zRange.first;
const float currentZFar = zRange.second;
@ -409,17 +409,17 @@ namespace ZL {
renderer.LoadIdentity();
renderer.TranslateMatrix({ 0,0, -1.0f * Environment::zoom });
renderer.RotateMatrix(Environment::inverseShipMatrix);
renderer.TranslateMatrix(-Environment::shipPosition);
renderer.TranslateMatrix(-Environment::shipState.position);
renderer.RenderUniform1f("uDistanceToPlanetSurface", dist);
renderer.RenderUniform1f("uCurrentZFar", currentZFar);
renderer.RenderUniform3fv("uViewPos", Environment::shipPosition.data());
//std::cout << "uViewPos" << Environment::shipPosition << std::endl;
renderer.RenderUniform3fv("uViewPos", Environment::shipState.position.data());
//std::cout << "uViewPos" << Environment::shipState.position << std::endl;
// PlanetObject.cpp, метод drawStones
Vector3f sunDirWorld = Vector3f(1.0f, -1.0f, -1.0f).normalized();
renderer.RenderUniform3fv("uLightDirWorld", sunDirWorld.data());
Vector3f playerDirWorld = Environment::shipPosition.normalized();
Vector3f playerDirWorld = Environment::shipState.position.normalized();
float playerLightFactor = max(0.0f, (playerDirWorld.dot(-sunDirWorld) + 0.2f) / 1.2f);
renderer.RenderUniform1f("uPlayerLightFactor", playerLightFactor);
@ -479,7 +479,7 @@ namespace ZL {
renderer.EnableVertexAttribArray(vPositionName);
renderer.EnableVertexAttribArray(vNormalName);
float dist = planetData.distanceToPlanetSurfaceFast(Environment::shipPosition);
float dist = planetData.distanceToPlanetSurfaceFast(Environment::shipState.position);
auto zRange = planetData.calculateZRange(dist);
float currentZNear = zRange.first;
float currentZFar = zRange.second;
@ -499,7 +499,7 @@ namespace ZL {
renderer.LoadIdentity();
renderer.TranslateMatrix({ 0,0, -1.0f * Environment::zoom });
renderer.RotateMatrix(Environment::inverseShipMatrix);
renderer.TranslateMatrix(-Environment::shipPosition);
renderer.TranslateMatrix(-Environment::shipState.position);
const Matrix4f viewMatrix = renderer.GetCurrentModelViewMatrix();
@ -536,7 +536,7 @@ namespace ZL {
renderer.RenderUniform3fv("uWorldLightDir", worldLightDir.data());
// 1. Рассчитываем uPlayerLightFactor (как в Game.cpp)
Vector3f playerDirWorld = Environment::shipPosition.normalized();
Vector3f playerDirWorld = Environment::shipState.position.normalized();
Vector3f sunDirWorld = Vector3f(1.0f, -1.0f, -1.0f).normalized();
// Насколько игрок на свету
@ -549,7 +549,7 @@ namespace ZL {
// 3. Убедитесь, что uSkyColor тоже передан (в коде выше его не было)
renderer.RenderUniform3fv("uSkyColor", color.data());
//Vector3f playerDirWorld = Environment::shipPosition.normalized();
//Vector3f playerDirWorld = Environment::shipState.position.normalized();
renderer.RenderUniform3fv("uPlayerDirWorld", playerDirWorld.data());
glEnable(GL_BLEND);

View File

@ -1,4 +1,4 @@
#pragma once
#pragma once
#include "render/Renderer.h"
#include "PlanetData.h"
@ -6,11 +6,11 @@ namespace ZL {
struct StoneParams
{
static const float BASE_SCALE; // Общий размер камня
static const float MIN_AXIS_SCALE; // Минимальное растяжение/сжатие по оси
static const float MAX_AXIS_SCALE; // Максимальное растяжение/сжатие по оси
static const float MIN_PERTURBATION; // Минимальное радиальное возмущение вершины
static const float MAX_PERTURBATION; // Максимальное радиальное возмущение вершины
static const float BASE_SCALE; // Общий размер камня
static const float MIN_AXIS_SCALE; // Минимальное растяжение/сжатие по оси
static const float MAX_AXIS_SCALE; // Максимальное растяжение/сжатие по оси
static const float MIN_PERTURBATION; // Минимальное радиальное возмущение вершины
static const float MAX_PERTURBATION; // Максимальное радиальное возмущение вершины
static const int STONES_PER_TRIANGLE;
};
@ -23,19 +23,19 @@ namespace ZL {
};
enum class ChunkStatus {
Empty, // Данных нет
Generating, // Задача в TaskManager (CPU)
ReadyToUpload, // Данные в памяти, ждут очереди в главный поток
Live // Загружено в GPU и готово к отрисовке
Empty, // Данных нет
Generating, // Задача в TaskManager (CPU)
ReadyToUpload, // Данные в памяти, ждут очереди в главный поток
Live // Загружено в GPU и готово к отрисовке
};
struct StoneGroup {
// mesh.PositionData и прочие будут заполняться в inflate()
// mesh.PositionData и прочие будут заполняться в inflate()
VertexDataStruct mesh;
std::vector<std::vector<StoneInstance>> allInstances;
// Очищает старую геометрию и генерирует новую для указанных индексов
// Очищает старую геометрию и генерирует новую для указанных индексов
std::vector<VertexRenderStruct> inflate(int count);
VertexRenderStruct inflateOne(int index, float scaleModifier);
@ -43,13 +43,13 @@ namespace ZL {
std::vector<ChunkStatus> statuses;
// Инициализация статусов при создании группы
// Инициализация статусов при создании группы
void initStatuses() {
statuses.assign(allInstances.size(), ChunkStatus::Empty);
}
};
// Теперь возвращает заготовку со всеми параметрами, но без тяжелого меша
// Теперь возвращает заготовку со всеми параметрами, но без тяжелого меша
StoneGroup CreateStoneGroupData(uint64_t globalSeed, const LodLevel& lodLevel);
Triangle createLocalTriangle(const Triangle& sampleTri);

View File

@ -24,6 +24,11 @@ namespace ZL {
// Graceful shutdown
~TaskManager();
boost::asio::io_context& getIOContext()
{
return ioContext;
}
};